初中数学

如图所示,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O 上一点,且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.

(1)求证:PB是⊙O的切线;
(2)求证:AQ•PQ=OQ•BQ;
(3)设∠AOQ=α,若cosα= ,OQ=15,求AB的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.
(1)求证:△CDE∽△CAD;
(2)若AB=2,AC=2,求AE的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为  (     ) 
A.cm   B.4cm  C.cm  D.cm

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.
(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用:请利用(1)(2)获得的经验解决问题:
如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形 EFGH 的四个顶点分别在菱形 ABCD 的四条边上, BE = BF .将 ΔAEH ΔCFG 分别沿边 EH FG 折叠,当重叠部分为菱形且面积是菱形 ABCD 面积的 1 16 时,则 AE EB (    )

A. 5 3 B.2C. 5 2 D.4

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如果把两条直角边长分别为5,10的直角三角形按相似比 3 5 进行缩小,得到的直角三角形的面积是  

来源:2019年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③ ) 的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为 m ,水平部分线段长度之和记为 n ,则这三个多边形中满足 m = n 的是 (    )

A.

只有②

B.

只有③

C.

②③

D.

①②③

来源:2016年江西省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作▱DEFA.

(1)当m=1时,求AE的长.
(2)当0<m<3时,若▱DEFA为矩形,求m的值;
(3)是否存在m的值,使得▱DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,D、E分别是AB、AC的中点,则△ADE与△ABC的面积比为             

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是       

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.

(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在比例尺是1:8000的某市地图上,若一条路的长度约25cm,则它的实际长度约为______;对于地图上3cm×5cm的矩形广场相应的实际占地面积为_____平方千米.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB是____米.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AB=3,AD=4,将此矩形折叠,使点D落在AB边上的点E处,折痕为FH,点C落在点Q处,EQ与BC交于点G,设AE=x,四边形EFHQ的面积为y,则y关于x的函数解析式是                     

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)

(1)若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为     
②当AC=3,BC=4时,AD的长为     
(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质试题