初中数学

如图所示,已知第一个三角形周长为1,依次取三角形三边中点画三角形,在第个图形中,最小三角形的周长是              

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

根据相似多边形的定义,我们把四个角分别相等,四条边成比例的两个凸四边形叫做相似四边形.相似四边形对应边的比叫做相似比.

(1)某同学在探究相似四边形的判定时,得到如下三个命题,请判断它们是否正确(直接在横线上填写"真"或"假" )

①四条边成比例的两个凸四边形相似; (   命题)

②三个角分别相等的两个凸四边形相似; (   命题)

③两个大小不同的正方形相似. (   命题)

(2)如图1,在四边形 ABCD 和四边形 A 1 B 1 C 1 D 1 中, ABC = A 1 B 1 C 1 BCD = B 1 C 1 D 1 AB A 1 B 1 = BC B 1 C 1 = CD C 1 D 1 .求证:四边形 ABCD 与四边形 A 1 B 1 C 1 D 1 相似.

(3)如图2,四边形 ABCD 中, AB / / CD AC BD 相交于点 O ,过点 O EF / / AB 分别交 AD BC 于点 E F .记四边形 ABFE 的面积为 S 1 ,四边形 EFCD 的面积为 S 2 ,若四边形 ABFE 与四边形 EFCD 相似,求 S 2 S 1 的值.

来源:2019年湖南省长沙市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

已知==,且,则的值为________________.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,△ABC的边BC在直线l上,AD是△ABC的高,∠ABC=45°,BC=6cm,AB=cm,点 P 从点B出发沿BC方向以1cm/s的速度向点C运动,当点P到点C时,停止运动.PQ⊥BC,PQ交AB或AC于点Q,以PQ为一边向右侧作矩形PQRS,PS=2PQ,矩形PQRS与△ABC重叠部分的面积为S(cm2),点P的运动时间为t(s).回答下列问题:

(1)AD=            cm;
(2)当点R在边AC上时,求t的值;
(3)求S与t之间的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使△ABC∽△CAD,只要CD等于

A. B. C. D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方形ABCD中,E、F分别是边AD、CD上的点,,连接EF并延长交BC的延长线于点G.

(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知线段的中点, 上一点,连接交于点.

(1)如图,当OA=OB且中点时,求的值;
(2)如图,当OA=OB,=时,求tan∠

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,图中的小方格都是边长为1的正方形,△ABC的A、B、C三点坐标为A(2,0)、B(2,2)、C(6,3).

(1)请在图中画出一个△,使△与△ABC是以坐标原点为位似中心,相似比为2的位似图形.
(2)求△的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形 EFGH 的四个顶点分别在菱形 ABCD 的四条边上, BE = BF .将 ΔAEH ΔCFG 分别沿边 EH FG 折叠,当重叠部分为菱形且面积是菱形 ABCD 面积的 1 16 时,则 AE EB (    )

A. 5 3 B.2C. 5 2 D.4

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如果把两条直角边长分别为5,10的直角三角形按相似比 3 5 进行缩小,得到的直角三角形的面积是  

来源:2019年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在正方形网格中,每个小正方形的边长均相等.网格中三个多边形(分别标记为①,②,③ ) 的顶点均在格点上.被一个多边形覆盖的网格线中,竖直部分线段长度之和记为 m ,水平部分线段长度之和记为 n ,则这三个多边形中满足 m = n 的是 (    )

A.

只有②

B.

只有③

C.

②③

D.

①②③

来源:2016年江西省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(4,0),B(0,3).点C的坐标为(0,m),过点C作CE⊥AB于点E,点D为x轴正半轴的一动点,且满足OD=2OC,连结DE,以DE,DA为边作▱DEFA.

(1)当m=1时,求AE的长.
(2)当0<m<3时,若▱DEFA为矩形,求m的值;
(3)是否存在m的值,使得▱DEFA为菱形?若存在,直接写出m的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,D、E分别是AB、AC的中点,则△ADE与△ABC的面积比为             

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是       

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.

(1)求证:△DCE∽△BCA;
(2)若AB=3,AC=4.求DE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质试题