已知:与成正比例,且时,。
(1)试求与之间的函数关系式;
(2)当时,求的值;
(3)当取何值时, ?;
在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有有无数多个.
(1)若点M(2,a)是反比例函数(k为常数,)图象上的“理想点”,求这个反比例函数的表达式;
(2)函数(m为常数,)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.
已知水池的容量一定,当每小时的灌水量为q=3米3时,灌满水池所需的时间为t=12小时.
⑴写出灌水量q与灌满水池所需的时间t的函数关系式;
⑵求当灌满水池所需8小时时,每小时的灌水量.
(本题10分)如图,的图象与反比例函数的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0).
(1)求这两个函数的表达式;
(2)请直接写出当x取何值时,.
近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4mg/L,此后浓度呈直线型增加,在第7小时达到最高值46mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图所示,根据题中相关信息回答下列问题:
(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,并写出相应的自变量取值范围;
(2)当空气中的CO浓度达到34mg/L时,井下3km的矿工接到自动报警信号,这时他们至少要以多少km/h的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO浓度降到4mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
已知直线y=﹣3x与双曲线y=交于点P (﹣1,n).
(1)求m的值;
(2)若点A (,),B(,)在双曲线y=上,且<<0,试比较,的大小.
如图,在直角坐标系中,已知菱形ABCD的面积为15,顶点A在双曲线上,CD与y轴重合,且AB⊥x轴于B,AB=5.
(1)求顶点A的坐标和k的值;
(2)求直线AD的解析式.
某地计划用120~180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万米3。写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万米3)之间的函数关系式。并给出自变量x的取值范围。
如图,在平面直角坐标系xOy中,直线y=﹣x+b与x轴交于点A,与双曲线y=﹣在第二象限内交于点B(﹣3,a).
(1)求a和b的值;
(2)过点B作直线l平行x轴交y轴于点C,求△ABC的面积.
如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C,过B点作BE⊥x轴,垂足为E.若△ADO的面积为1,D为OB的中点,
(1)求四边形DCEB的面积。
(2)求k的值。
如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.
(1)求一次函数的表达式;
(2)若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.
如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴上,函数y=的图象过点P(4,3)和矩形的顶点B(m,n)(0<m<4).
(1)求k的值;
(2)连接PA,PB,若△ABP的面积为6,求直线BP的解析式.
已知函数与函数交于点A(2,b)B(-3,m)两点(点A在第一象限),
|