如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C,过B点作BE⊥x轴,垂足为E.若△ADO的面积为1,D为OB的中点,(1)求四边形DCEB的面积。(2)求k的值。
如图,△ABC中,∠B=90°,AB=6cm,BC=8cm,将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连结AD,求证:四边形ACFD是菱形。
如图,在方格纸中,△PQR的三个顶点及A,B,C,D,E五个点都在小方格的顶点上,现以A,B,C,D,E中的三个顶点为顶点画三角形,在图甲中画出一个三角形与△PQR全等在图乙中画出一个三角形与△PQR面积相等 但不全等
解方程:x²-2x=5
计算:(-3)²+(-3)×2-;
为了更好地治理木兰溪水质,保护环境,市治污公司决定购买10台污水处理设备,现有A B两种设备,A B单价分别为a万元/台 b万元/台 月处理污水分别为240吨/月 200吨/月 ,经调查 买一台A型设备比买一台B型设备多2万元 , 购买2台A型设备比购买3台B型设备少6万元。求a.、 b的值 。经预算;市治污公司购买污水处理器的资金不超过105万元 ,你认为该公司有哪几种购买方案?在(2)的条件下,若每月处理的污水不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的方案