如图,在矩形 ABCD中, AB=8, BC=6, M为 AD上一点,将△ ABM沿 BM翻折至△ EBM, ME和 BE分别与 CD相交于 O, F两点,且 OE= OD,则 AM的长为 .
如图,在△ ABC中,∠ BAC=45°, AD⊥ BC于点 D, BD=6, DC=4,求 AD的长.小明同学利用翻折,巧妙地解答了此题,按小明的思路探究并解答下列问题:
(1)分别以 AB, AC所在直线为对称轴,画出△ ABD和△ ACD的对称图形,点 D的对称点分别为点 E, F,延长 EB和 FC相交于点 G,求证:四边形 AEGF是正方形;
(2)设 AD= x,建立关于 x的方程模型,求出 AD的长.
如图,将平行四边形 ABCD沿对角线 BD折叠,使点 A落在点 A′处,∠1=∠2=48°,则∠ A′的度数为 .
如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若 ,则∠FED′的大小为 .
如图,将矩形纸片 折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.
(1)判断四边形CEGF的形状,并证明你的结论;
(2)若 ,求线段CE的取值范围.
如图,在矩形ABCD中,点E、F分别在边CD、BC上,且DC=3DE=3a.将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP= .
如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,CQ的长为( )
A.5B.7C.8D.
如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:OC=3:5,AB=8.
(1)求⊙O的半径;
(2)点E为圆上一点,∠ECD=15°,将 沿弦CE翻折,交CD于点F,求图中阴影部分的面积.
如图,将半圆形纸片折叠,使折痕 CD与直径 AB平行, 的中点 P落在 OP上的点 P'处,且 OP'= OP,折痕 CD=2 ,则tan∠ COP的值为( )
A. |
|
B. |
|
C. |
|
D. |
|
如图,将边长为4的菱形 ABCD纸片折叠,使点 A恰好落在对角线的交点 O处,若折痕 EF=2 ,则∠ A=( )
A. |
120° |
B. |
100° |
C. |
60° |
D. |
30° |
如图,Rt△ ABC中, AB=9, BC=6,∠ B=90°,将△ ABC折叠,使 A点与 BC的中点 D重合,折痕为 PQ,则线段 BQ的长度为( )
A. |
|
B. |
|
C. |
4 |
D. |
5 |
如图,将矩形纸片 ABCD折叠,使点 B与点 D重合,折痕为 MN,若 AB=2, BC=4,那么线段 MN的长为( )
A. |
|
B. |
|
C. |
|
D. |
2 |
如图,在一张矩形纸片 ABCD中, AB=3,点 P, Q分别是 AB和 CD的中点,现将这张纸片折叠,使点 D落到 PQ上的点 G处,折痕为 CH,若 HG的延长线恰好经过点 B,则 AD的长为 .
如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若 , ,则点A′的坐标为 .