初中数学

将一个直角三角形纸片 OAB 放置在平面直角坐标系中,点 O ( 0 , 0 ) ,点 A ( 2 , 0 ) ,点 B 在第一象限, OAB = 90 ° B = 30 ° ,点 P 在边 OB 上(点 P 不与点 O B 重合).

(Ⅰ)如图①,当 OP = 1 时,求点 P 的坐标;

(Ⅱ)折叠该纸片,使折痕所在的直线经过点 P ,并与 x 轴的正半轴相交于点 Q ,且 OQ = OP ,点 O 的对应点为 O ' ,设 OP = t

①如图②,若折叠后△ O ' PQ ΔOAB 重叠部分为四边形, O ' P O ' Q 分别与边 AB 相交于点 C D ,试用含有 t 的式子表示 O ' D 的长,并直接写出 t 的取值范围;

②若折叠后△ O ' PQ ΔOAB 重叠部分的面积为 S ,当 1 t 3 时,求 S 的取值范围(直接写出结果即可).

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,将矩形纸片 ABCD 沿 EF 折叠后,点 D C 分别落在点 D 1 C 1 的位置, E D 1 的延长线交 BC 于点 G ,若 EFG = 64 ° ,则 EGB 等于 (    )

A.

128 °

B.

130 °

C.

132 °

D.

136 °

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, E AB 的中点, P BC 边上的任意一点,把 ΔPBE 沿 PE 折叠,得到 ΔPFE ,连接 CF .若 AB = 10 BC = 12 ,则 CF 的最小值为  

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 纸片中, ACB = 90 ° AC = 4 BC = 3 ,点 D E 分别在 AB AC 上,连结 DE ,将 ΔADE 沿 DE 翻折,使点 A 的对应点 F 落在 BC 的延长线上,若 FD 平分 EFB ,则 AD 的长为 (    )

A.

25 9

B.

25 8

C.

15 7

D.

20 7

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

(1)如图1,将矩形 ABCD 折叠,使 BC 落在对角线 BD 上,折痕为 BE ,点 C 落在点 C ' 处,若 ADB = 46 ° ,则 DBE 的度数为   °

(2)小明手中有一张矩形纸片 ABCD AB = 4 AD = 9

【画一画】

如图2,点 E 在这张矩形纸片的边 AD 上,将纸片折叠,使 AB 落在 CE 所在直线上,折痕设为 MN (点 M N 分别在边 AD BC 上),利用直尺和圆规画出折痕 MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);

【算一算】

如图3,点 F 在这张矩形纸片的边 BC 上,将纸片折叠,使 FB 落在射线 FD 上,折痕为 GF ,点 A B 分别落在点 A ' B ' 处,若 AG = 7 3 ,求 B ' D 的长;

【验一验】

如图4,点 K 在这张矩形纸片的边 AD 上, DK = 3 ,将纸片折叠,使 AB 落在 CK 所在直线上,折痕为 HI ,点 A B 分别落在点 A ' B ' 处,小明认为 B ' I 所在直线恰好经过点 D ,他的判断是否正确,请说明理由.

来源:2018年江苏省镇江市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ABC 中, AC 2 2 ABC 45 ° BAC 15 ° ,将 ACB 沿直线 AC翻折至 ABC 所在的平面内,得 ACD .过点 A AE ,使 DAE DAC ,与 CD 的延长线交于点 E,连接 BE,则线段 BE的长为(  )

A.

6

B.

3

C.

2 3

D.

4

来源:2020年重庆市中考数学试卷(b卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = m BC = n m > n ,点 P 是边 AB 上一点,连接 CP ,将 ΔACP 沿 CP 翻折得到 ΔQCP

(1)若 m = 4 n = 3 ,且 PQ AB ,求 BP 的长;

(2)连接 BQ ,若四边形 BCPQ 是平行四边形,求 m n 之间的关系式.

来源:2018年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,将三角形纸片 ABC折叠,使点 BC都与点 A重合,折痕分别为 DEFG.已知 ACB 15 ° AE EF DE = 3 ,则 BC的长为   

来源:2021年四川省广安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 中, E AB 的中点,将 ΔBCE 沿 CE 翻折,点 B 落在点 F 处, tan DCE = 4 3 .设 AB = x ΔABF 的面积为 y ,则 y x 的函数图象大致为 (    )

A.B.

C.D.

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,矩形纸片 ABCD AB = 6 cm BC = 8 cm E 为边 CD 上一点.将 ΔBCE 沿 BE 所在的直线折叠,点 C 恰好落在 AD 边上的点 F 处,过点 F FM BE ,垂足为点 M ,取 AF 的中点 N ,连接 MN ,则 MN =    cm

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 中,点 D 为边 BC 的中点,连接 AD ,将 ΔADC 沿直线 AD 翻折至 ΔABC 所在平面内,得 ΔADC ' ,连接 CC ' ,分别与边 AB 交于点 E ,与 AD 交于点 O .若 AE = BE BC ' = 2 ,则 AD 的长为   

来源:2021年重庆市中考数学试卷(B卷)
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,将长、宽分别为 12 cm 3 cm 的长方形纸片分别沿 AB AC 折叠,点 M N 恰好重合于点 P .若 α = 60 ° ,则折叠后的图案(阴影部分)面积为 (    )

A.

( 36 - 6 3 ) c m 2

B.

( 36 - 12 3 ) c m 2

C.

24 c m 2

D.

36 c m 2

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

将一张圆形纸片(圆心为点 O ) 沿直径 MN 对折后,按图1分成六等份折叠得到图2,将图2沿虚线 AB 剪开,再将 ΔAOB 展开得到如图3的一个六角星.若 CDE = 75 ° ,则 OBA 的度数为   

来源:2021年四川省资阳市中考数学试卷
  • 更新:2021-08-15
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° AB = 2 2 AC = 6 ,点 E 在线段 AC 上,且 AE = 1 D 是线段 BC 上的一点,连接 DE ,把四边形 ABDE 沿直线 DE 翻折,得到四边形 F GDE ,当点 G 恰好落在线段 AC 上时, AF =   

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 2 B = 45 ° C = 60 °

(1)求 BC 边上的高线长.

(2)点 E 为线段 AB 的中点,点 F 在边 AC 上,连结 EF ,沿 EF ΔAEF 折叠得到 ΔPEF

①如图2,当点 P 落在 BC 上时,求 AEP 的度数.

②如图3,连结 AP ,当 PF AC 时,求 AP 的长.

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学翻折变换(折叠问题)试题