阅读理解:如图1, 与直线 、 都相切,不论 如何转动,直线 、 之间的距离始终保持不变(等于 的直径),我们把具有这一特性的图形称为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力就可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.
拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线 , 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线 , 之间的距离等于 ,则莱洛三角形的周长为 .
如图,边长为1的正三角形 放置在边长为2的正方形内部,顶点 在正方形的一个顶点上,边 在正方形的一边上,将 绕点 顺时针旋转,当点 落在正方形的边上时,完成第1次无滑动滚动(如图 ;再将 绕点 顺时针旋转,当点 落在正方形的边上时,完成第2次无滑动滚动(如图 , ,每次旋转的角度都不大于 ,依次这样操作下去,当完成第2016次无滑动滚动时,点 经过的路径总长为 .
如图,图1是由若干个相同的图形(图 组成的美丽图案的一部分,图2中,图形的相关数据:半径 , .则图2的周长为 (结果保留 .
如图,在边长为1的小正方形网格中,将 绕某点旋转到△ 的位置,则点 运动的最短路径长为 .
如图,已知 为 的直径, 为半圆上异于 、 的一个动点, 的平分线与 交于点 ,若圆的半径为2时,则 的长度为 .
如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为 ,则该莱洛三角形的周长为 .
抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图, , 分别与 相切于点 , ,延长 , 交于点 .若 , 的半径为 ,则图中 的长为 .(结果保留
如图,六边形 是正六边形,曲线 叫做“正六边形的渐开线”, , , , , , , 的圆心依次按 , , , , , 循环,且每段弧所对的圆心角均为正六边形的一个外角.当 时,曲线 的长度是 .
如图,在扇形 中, , 平分 交 于点 ,点 为半径 上一动点.若 ,则阴影部分周长的最小值为 .