如图,在平面直角坐标系 中,以点 为圆心的圆分别交 轴的正半轴于点 ,交 轴的正半轴于点 .劣弧 的长为 ,直线 与 轴、 轴分别交于点 、 .
(1)求证:直线 与 相切;
(2)求图中所示的阴影部分的面积(结果用 表示)
如图, 是 的直径,点 为线段 上一点(不与 , 重合),作 ,交 于点 ,作直径 ,过点 的切线交 的延长线于点 ,作 于点 ,连接 .
(1)求证: 平分 ;
(2)求证: ;
(3)当 且 时,求劣弧 的长度.
如图,扇形纸扇完全打开后,外侧两竹条 , 的夹角为 , 长为30厘米,则 的长为 厘米.(结果保留
如图,OA,OD是⊙O半径,过A作⊙O的切线,交∠AOD的平分线于点C,连接CD,延长AO交⊙O于点E,交CD的延长线于点B
(1)求证:直线CD是⊙O的切线;
(2)如果D点是BC的中点,⊙O的半径为3cm,求 的长度(结果保留π)
如图,在扇形 中, , 平分 交 于点 ,点 为半径 上一动点.若 ,则阴影部分周长的最小值为 .
如图, 是 的直径, 直线 与 相切于点 ,且与 的延长线交于点 ,点 是 的中点 .
(1) 求证: ;
(2) 若 , 的半径为 3 ,一只蚂蚁从点 出发, 沿着 爬回至点 ,求蚂蚁爬过的路程 , , 结果保留一位小数) .
抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图, , 分别与 相切于点 , ,延长 , 交于点 .若 , 的半径为 ,则图中 的长为 .(结果保留
如图,公园内有一个半径为18米的圆形草坪,从 A地走到 B地有观赏路(劣弧 AB)和便民路(线段 AB).已知 A、 B是圆上的点, O为圆心, ,小强从 A走到 B,走便民路比走观赏路少走( )米.
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, ,对角线 , 经过点 , ,与 交于点 ,连接 并延长与 交于点 ,与 的延长线交于点 , .
(1)求证: 是 的切线;
(2)若 ,求 的长(结果保留 .
如图, 的半径是2,扇形 的圆心角为 .若将扇形 剪下围成一个圆锥,则此圆锥的底面圆的半径为 .