初中数学

如图,矩形 ABCD 中, AB = m BC = n ,将此矩形绕点 B 顺时针方向旋转 θ ( 0 ° < θ < 90 ° ) 得到矩形 A 1 B C 1 D 1 ,点 A 1 在边 CD 上.

(1)若 m = 2 n = 1 ,求在旋转过程中,点 D 到点 D 1 所经过路径的长度;

(2)将矩形 A 1 B C 1 D 1 继续绕点 B 顺时针方向旋转得到矩形 A 2 B C 2 D 2 ,点 D 2 BC 的延长线上,设边 A 2 B CD 交于点 E ,若 A 1 E EC = 6 1 ,求 n m 的值.

来源:2018年江苏省无锡市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

若扇形的圆心角为 45 ° ,半径为3,则该扇形的弧长为  

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC O 的内接三角形, BAC = 60 ° BC ̂ 的长是 4 π 3 ,则 O 的半径是  

来源:2018年江苏省常州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AC = BC ,以 BC 为直径的半圆 O AB 于点 D ,过点 D 作半圆 O 的切线,交 AC 于点 E

(1)求证: ACB = 2 ADE

(2)若 DE = 3 AE = 3 ,求 CD ^ 的长.

来源:2021年浙江省丽水市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,公园内有一个半径为20米的圆形草坪, A B 是圆上的点, O 为圆心, AOB = 120 ° ,从 A B 只有路 AB ̂ ,一部分市民为走“捷径”,踩坏了花草,走出了一条小路 AB .通过计算可知,这些市民其实仅仅少走了  步(假设1步为0.5米,结果保留整数).(参考数据: 3 1 . 732 π 3 . 142 )

来源:2018年浙江省绍兴市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, AB ̂ 的半径 OA = 2 OC AB 于点 C AOC = 60 °

(1)求弦 AB 的长.

(2)求 AB ̂ 的长.

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径, C D O 上的点, OC / / BD ,交 AD 于点 E ,连接 BC

(1)求证: AE = ED

(2)若 AB = 10 CBD = 36 ° ,求 AC ̂ 的长.

来源:2018年浙江省湖州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,放置在直线 l 上的扇形 OAB .由图①滚动(无滑动)到图②,再由图②滚动到图③.若半径 OA = 2 AOB = 45 ° ,则点 O 所经过的运动路径的长是 (    )

A. 2 π + 2 B. 3 π C. 5 π 2 D. 5 π 2 + 2

来源:2020年山东省淄博市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,扇形纸扇完全打开后,外侧两竹条 AB AC 的夹角为 120 ° AB 长为30厘米,则 BC ̂ 的长为  厘米.(结果保留 π )

来源:2017年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在扇形 BOC 中, BOC = 60 ° OD 平分 BOC BC ̂ 于点 D ,点 E 为半径 OB 上一动点.若 OB = 2 ,则阴影部分周长的最小值为     

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图, AC BD 分别与 O 相切于点 C D ,延长 AC BD 交于点 P .若 P = 120 ° O 的半径为 6 cm ,则图中 CD ̂ 的长为    cm .(结果保留 π )

来源:2021年浙江省宁波市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图,公园内有一个半径为18米的圆形草坪,从 A地走到 B地有观赏路(劣弧 AB)和便民路(线段 AB).已知 AB是圆上的点, O为圆心, AOB 120 ° ,小强从 A走到 B,走便民路比走观赏路少走(  )米.

A.

6 π 6 3

B.

6 π 9 3

C.

12 π 9 3

D.

12 π 18 3

来源:2021年四川省广安市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, D = 60 ° ,对角线 AC BC O 经过点 A B ,与 AC 交于点 M ,连接 AO 并延长与 O 交于点 F ,与 CB 的延长线交于点 E AB = EB

(1)求证: EC O 的切线;

(2)若 AD = 2 3 ,求 AM ̂ 的长(结果保留 π )

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, O 的半径是2,扇形 BAC 的圆心角为 60 ° .若将扇形 BAC 剪下围成一个圆锥,则此圆锥的底面圆的半径为  

来源:2020年新疆生产建设兵团中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, A = 90 ° BC = 2 2 ,以 BC 的中点 O 为圆心 O 分别与 AB AC 相切于 D E 两点,则 DE ̂ 的长为 (    )

A. π 4 B. π 2 C. π D. 2 π

来源:2017年浙江省宁波市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学弧长的计算试题