初中数学

如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=,,则点A′的坐标         

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=6,则BC的长为(    )

A.1 B.2 C.2 D.12

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA的延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为(    )

A.22            B.20             C.18             D.16

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一块矩形塑料板ABCD,AD=10,AB=4.将一块足够大的直角三角板PHF的直角顶点P置于AD边上(不于A、D 重合,任意移动P点和三角板PHF的位置,如图(1).

(1)△PEF是否存在这样的位置,使两边直角边分别通过B、C两点?如图(2),若存在,请求出AP的长度,若不存在,请说理由.
(2)PH始终通过B点时,PF交BC于E点,交DC的延长线于Q点,△PHF是否存在这样的位置,使得CE=2?若能请求出这时AP的长度;若不能,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分10分)如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连结CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连结ND、BM,设OP=

(1)求点M的坐标(用含的代数式表示);
(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由;
(3)当为何值时,四边形BNDM的面积最小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形的面积为6,它的两条对角线交于点,以为两邻边作平行四边形,平行四边形的对角线交于点,同样以 为两邻边作平行四边形,……,依次类推,则平行四边形的面积为           .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知菱形ABCD边长为5cm,tan∠DAB=,连接AC、BD,过点B作BE⊥AB分别交AC、CD于E、F。若点P为AD上一点,且∠DPE+∠DAB=900,则AP长为          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知边长为1的正方形ABCD中,点E、F分别在边BC、CD上,

(1)如图1,若AE⊥BF,求证:EA=FB;
(2)如图2,若∠EAF=, AE的长为,试求AF的长度。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.

(1)求证:梯形ABCD是等腰梯形;
(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,AB∥CD,AD=BC,将△ACD沿对角线翻折后,点D恰好与边AB的中点M重合.

(1)点C是否在以AB为直径的圆上?请说明理由.
(2)当AB=4时,求此梯形的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆交x轴于D、E两点(点D在点E的右方)求点E、D的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.
  
(1)求矩形ABCD的边AD的长.
(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.
(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;
②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).

(1)求当t为多少时,四边形PQAB为平行四边形?
(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;
(3)直接写出在(2)的情况下,直线PQ的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形ABCD中,点E、F分别在AB、BC上,DH⊥EF于H,DA=HD,EH=2,HF=3.则正方形ABCD的边长为        

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,点D是△ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合),以BD、BF为邻边作平行四边形BDEF,又AP綊BE(点P、E在直线AB的同侧),如果BD=AB,那么△PBC的面积与△ABC的面积之比为(  )

A.     B.    C.     D.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质试题