2015年初中毕业升学考试(湖北衡阳卷)数学
已知等腰三角形的两边长分别是5和6,则这个等腰三角形的周长为( ).
A.11 | B.16 | C.17 | D.16或17 |
下列命题是真命题的是( ).
A.对角线互相平分的四边形是平行四边形 |
B.对角线相等的四边形是矩形 |
C.对角线互相垂直的四边形是菱形 |
D.对角线互相垂直平分的四边形是正方形 |
在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是( ).
A.50元,30元 | B.50元,40元 |
C.50元,50元 | D.55元,50元 |
绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为米,根据题意,可列方程为( ).
A. | B. |
C. | D. |
如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔
顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为( ).
A. | B.51 | C. | D.101 |
如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O 处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为 m.
如图,△,△,△,…,△,都是等腰直角三角形.其中点,,…,在轴上,点,,…,,在直线上.已知,则的长为 .
(本小题满分6分)为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质揣测.体质揣测的结果分为四个等级:优秀、良好、合格、不合格;根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:
(1)在扇形统计图中,“合格“的百分比为 .
(2)本次体质抽测中,抽测结果为“不合格“等级的学生有 人.
(3)若该校九年级有400名学生,估计该校九年级体质为“不合格“等级的学生约有 人.
(本小题满分6分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).
(1)在平面直角坐标系中画出△ABC关于轴对称的△A1B1C1;
(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.
①旋转角为多少度?
②写出点B2的坐标.
(本小题满分6分)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请用列表法或画树状图求选出的两名主持人“恰好为一男一女”的概率.
(本小题满分8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度(微克/毫升)与服药时间小时之间的函数关系如图所示(当时,与成反比).
(1)根据图象分别求出血液中药物浓度上升和下降阶段与之间的函数关系式;
(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?
(本小题满分8分)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.
(1)求证:CE为⊙O的切线;
(2)判断四边形AOCD是否为菱形?并说明理由.
(本小题满分10分)如图,顶点M在轴上的抛物线与直线相交于A、B两点,且点A在轴上,点B的横坐标为2,连结AM、BM.
(1)求抛物线的函数关系式;
(2)判断△ABM的形状,并说明理由;
(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(,),当满足什么条件时,平移后的抛物线总有不动点?