(本小题满分10分)如图,顶点M在轴上的抛物线与直线相交于A、B两点,且点A在轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(,),当满足什么条件时,平移后的抛物线总有不动点?
已知关于 x 的一元二次方程 x 2 - 6 x + 2 m - 1 = 0 有 x 1 , x 2 两实数根.
(1)若 x 1 = 1 ,求 x 2 及 m 的值;
(2)是否存在实数 m ,满足 ( x 1 - 1 ) ( x 2 - 1 ) = 6 m - 5 ?若存在,求出实数 m 的值;若不存在,请说明理由.
某海域有一小岛 P ,在以 P 为圆心,半径 r 为 10 ( 3 + 3 ) 海里的圆形海域内有暗礁.一海监船自西向东航行,它在 A 处测得小岛 P 位于北偏东 60 ° 的方向上,当海监船行驶 20 2 海里后到达 B 处,此时观测小岛 P 位于 B 处北偏东 45 ° 方向上.
(1)求 A , P 之间的距离 AP ;
(2)若海监船由 B 处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由 B 处开始沿南偏东至多多少度的方向航行能安全通过这一海域?
如图,点 E 是正方形 ABCD 的边 BC 上的动点, ∠ AEF = 90 ° ,且 EF = AE , FH ⊥ BH .
(1)求证: BE = CH ;
(2)若 AB = 3 , BE = x ,用 x 表示 DF 的长.
为庆祝中国共产党建党100周年,某校拟举办主题为“学党史跟党走”的知识竞赛活动.某年级在一班和二班进行了预赛,两个班参加比赛的人数相同,成绩分为 A 、 B 、 C 、 D 四个等级,其等级对应的分值分别为100分、90分、80分、70分,将这两个班学生的最后等级成绩分析整理绘制成了如图的统计图.
(1)这次预赛中,二班成绩在 B 等及以上的人数是多少?
(2)分别计算这次预赛中一班成绩的平均数和二班成绩的中位数;
(3)已知一班成绩 A 等的4人中有两个男生和2个女生,二班成绩 A 等的都是女生,年级要求从这两个班 A 等的学生中随机选2人参加学校比赛,若每个学生被抽取的可能性相等,求抽取的2人中至少有1个男生的概率.
抛物线 y = a x 2 - 2 bx + b ( a ≠ 0 ) 与 y 轴相交于点 C ( 0 , - 3 ) ,且抛物线的对称轴为 x = 3 , D 为对称轴与 x 轴的交点.
(1)求抛物线的解析式;
(2)在 x 轴上方且平行于 x 轴的直线与抛物线从左到右依次交于 E 、 F 两点,若 ΔDEF 是等腰直角三角形,求 ΔDEF 的面积;
(3)若 P ( 3 , t ) 是对称轴上一定点, Q 是抛物线上的动点,求 PQ 的最小值(用含 t 的代数式表示).