永川区某中学为了营造良好的文化氛围,学校决定在学校的一段文化墙上制作一幅永久性的标语,为此,在文化墙上特别做了一个长1640cm的长方形横标框,铺红色衬底.为了使制作时方便、制作出来的标语美观,对有关数据作了如下规定:边空:字宽:字距=6:9:2,如图所示.
根据这个规定,若这幅标语名称的字数为14,则边空、字宽、字距各是多少?
)已知,如图,现有、的正方形纸片和的矩形纸片各若干块,试选用这些纸片(每种纸片至少用一次)在下面的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使拼出的矩形面积为a2+3ab+2b2,并标出此矩形的长和宽.
现要建造一段水坝,它的横截面是梯形ABCD,其上底CD=4米,斜坡BC的坡度,,坝高DE=6米.
(1)求截面梯形的面积;
(2)若该水坝的长为1000米,工程由甲、乙两个工程队同时合作完成,原计划需要25天,但在开工时,甲工程队增加了机器,工作效率提高60%,结果工程提前了5天完成,问这两个工程队原计划每天各完成多少土方?(坝的土方=坝的横截面的面积×坝的长度)
如图17,在面积为4的平行四边形ABCD中,作一个面积为1的△ABP,使点P在平行四边形ABCD的边上(用直尺、圆规作图,保留作图痕迹,不要求写作法、证明),并写出满足条件的点P共有几个
如图,在梯形ABCD中,AD∥BC,∠B=∠ACD.
(1)证明:△ABC∽△DCA;
(2)若AC=6,BC=9,求AD长.
已知菱形的对角线和相交于点,,,
(1)菱形的对角线和具有怎样的位置关系?
(2)若沿两条对角线把菱形剪开,分成四个三角形,利用这四个三角形可拼成一个可以证明勾股定理的图形.请你画出示意图,并证明勾股定理.
(3)若,,求
①菱形的边长和菱形的面积.(直接写出结论)
②求菱形的高.(直接写出结论)
如图,在梯形ABCD中,AD∥BC,AB="DC" ,过点D作DE∥AB 交BC于点E.
(1) 请你判断四边形ABED的形状,并说明理由;
(2) 当△DEC为等边三角形时,
① 求∠B的度数;
② 若AD=4,DC=3,求等腰梯形ABCD的周长.
如图,在□ABCD中,AEBC,E是垂足,如果∠B=50°,那么∠D、
∠C、∠1与∠2分别等于多少度?
如图,平面直角坐标系中,矩形的顶点在原点,点在轴的正半轴上,点在轴的正半轴上.已知,,是的中点,是的中点.
(1)分别写出点、点的坐标;
(2)过点作交轴于点,求点的坐标;
(3)在线段上是否存在点,使得以点、、为顶点的三角形是等腰三角形,若存在,求出点的坐标;若不存在,请说明理由.
如图,DB∥AC,且DB=AC,E是AC的中点,
(1)求证:BC=DE;
(2)连结AD、BE,若要使四边形DBEA是矩形,则给△ABC添加一个什么条件,为什么?
(3)在(2)的条件下,若要使四边形DBEA是正方形,则∠C=" " 0
如图,在平行四边形ABCD中,∠ABC、∠BCD的平分线相交于点O,BO延长线交CD延长线于点E,
求证:OB=OE
如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,
操作示例:
我们可以取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC绕点P逆时针旋转180°拼接到△PFD的位置,构成新的图形(如图2).
思考发现:
判断图2中四边形ABEF的形状: ;四边形ABEF的面积是 。(用含字母的代数式表示)
实践探究:
类比图2的剪拼方法,请你就图3(已知:AB∥DC)画出剪拼成一个平行四边形的示意图.
联想拓展:
小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.
如图4,在梯形ABCD中,AD∥BC,E是CD的中点, EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积。
如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.
如图,正方形ABCD的边长是2,M是AD的中点.点E从点A出发,沿AB运动到点B停止.连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.
(1)设AE=x时,△EGF面积为y.求y关于x的函数关系式,并填写自变量x的取值范围;
(2)P是MG的中点,请直接写出点P运动路线的长.