初中数学

如图,在菱形ABCD中,AB=10,sinA=,点E在AB上,AE=4,过点E作EF∥AD,交CD于点F.

(1)请写出菱形ABCD的面积:           
(2)若点P从点A出发以1个单位长度/秒的速度沿着线段AB向终点B运动,同时点Q从点E出发也以1个单位长度/秒的速度沿着线段EF向终点F运动,设运动时间为t(秒).
①当t=5时,求PQ的长;
②以P为圆心,PQ长为半径的⊙P是否能与直线AD相切?如果能,求此时t的值;如果不能,说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,AC=AB=2,∠A=90°,将一块与△ABC全等的三角板的直角顶点放在点C上,一直角边与BC重叠.
(1)操作1:固定△ABC,将三角板沿C→B方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿C→B方向平移的距离为      
(2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度a(0°<a<90°),如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由;
(3)在(2)的情形下,连PQ,设BP=x,记△MPQ的面积为y,试求y关于x的函数关系式,并求x为何值时,y的值是四边形MPAQ的面积的一半,此时,指出四边形MPAQ的形状.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,ABCD是一张矩形纸片,AD=BC=1,AB=CD=5,在矩形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK。
(1)若∠1=70°,求∠MKN的度数;
(2)当折痕MN与对角线AC重合时,试求△MNK的面积.
(3)△MNK的面积能否小于0.5?若能,求出此时∠1的度数;若不能,试说明理由;

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,四边形OABC的OA,OC两边分别在x,y轴上,OA∥BC,BC=15cm,A点坐标为(16,0),C点坐标为(0,4).点P,Q分别从C,A同时出发,点P以2cm/s的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q到达点O时,点P也停止运动,设运动时间为t秒(0≤t≤4).

(1)求当t为多少时,四边形PQAB为平行四边形?
(2)求当t为多少时?PQ所在直线将四边形OABC分成左右两部分的面积比为1:2;
(3)直接写出在(2)的情况下,直线PQ的函数关系式.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A、G重合),设运动时间为t秒。连接BM并延长交AG于N。

(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;
(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=NH;
(3)过点M分别用AB、AD的垂线,垂足分别为E、F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知矩形长和宽分别为4和2,是否存在另一个矩形,它的周长和面积分别是已知矩形的?若存在请计算这个矩形的两边长,若不存在请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△绕点A逆时针旋转,得到等腰Rt△,设旋转角为,记直线的交点为P.

(1)如图1,当时,线段的长等于       ,线段的长等于       ;(直接填写结果)
(2)如图2,当时,求证:,且
(3)①设BC的中点为M,则线段PM的长为       ;②点P到AB所在直线的距离的最大值为       .(直接填写结果)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,]得△AB′C′,则S△AB′C′:S△ABC=           ;直线BC与直线B′C′所夹的锐角为          度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形OABC的边OA,OC在坐标轴上,点B的坐标为(﹣4,4).点P从点A出发,以每秒1个单位长度的速度沿x轴向点O运动;点Q从点O同时出发,以相同的速度沿x轴的正方向运动,规定点P到达点O时,点Q也停止运动.连接BP,过P点作BP的垂线,与过点Q平行于y轴的直线l相交于点D.BD与y轴交于点E,连接PE.设点P运动的时间为t(s).

(1)∠PBD的度数为_____,点D的坐标为______ (用t表示);
(2)求证:PE=AP+CE
(3)当t为何值时,△PBE为等腰三角形?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在锐角三角形 ABC 中, AD BC 边上的高,以 AD 为直径的 O AB 于点 E ,交 AC 于点 F ,过点 F FG AB ,垂足为 H ,交 AE ̂ 于点 G ,交 AD 于点 M ,连接 AG DE DF

(1)求证: GAD + EDF = 180 °

(2)若 ACB = 45 ° AD = 4 tan ABC = 2 ,求 HF 的长.

来源:2021年内蒙古乌兰察布市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 内接于 O AD 为直径,点 C CE AB 于点 E ,连接 AC

(1)求证: CAD = ECB

(2)若 CE O 的切线, CAD = 30 ° ,连接 OC ,如图2.

①请判断四边形 ABCO 的形状,并说明理由;

②当 AB = 2 时,求 AD AC CD ̂ 围成阴影部分的面积.

来源:2021年江西省中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

如图,已知 ΔABC 内接于 O ,点 C 在劣弧 AB 上(不与点 A B 重合),点 D 为弦 BC 的中点, DE BC DE AC 的延长线交于点 E ,射线 AO 与射线 EB 交于点 F ,与 O 交于点 G ,设 GAB = α ACB = β EAG + EBA = γ

(1)点点同学通过画图和测量得到以下近似数据:

α

30 °

40 °

50 °

60 °

β

120 °

130 °

140 °

150 °

γ

150 °

140 °

130 °

120 °

猜想: β 关于 α 的函数表达式, γ 关于 α 的函数表达式,并给出证明;

(2)若 γ = 135 ° CD = 3 ΔABE 的面积为 ΔABC 的面积的4倍,求 O 半径的长.

来源:2017年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AB=3,BC=4,动点P从点D出发沿DA向终点A运动,同时动点Q从点A出发沿对角线AC向终点C运动.过点P作PE∥DC,交AC于点E,动点P、Q的运动速度是每秒1个单位长度,运动时间为t秒,当点P运动到点A时,P、Q两点同时停止运动.

(1)用含有t的代数式表示PE=          
(2)探究:当t为何值时,四边形PQBE为梯形?
(3)是否存在这样的点P和点Q,使△PQE为等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.
①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得EF=BE+DF,请写出推理过程;
②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系          时,仍有EF=BE+DF;
(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在矩形ABCD中,AB=a,AD=b,点M为BC边上一动点(点M与点B、C不重合),连接AM,过点M作MN⊥AM,垂足为M,MN交CD或CD的延长线于点N.

(1)求证:△CMN∽△BAM;
(2)设BM=x,CN=y,求y关于x的函数解析式.当x取何值时,y有最大值,并求出y的最大值;
(3)当点M在BC上运动时,求使得下列两个条件都成立的b的取值范围:①点N始终在线段CD上,②点M在某一位置时,点N恰好与点D重合.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质解答题