初中数学

如图,在平行四边形ABCD中,E、F是对角线BD上的两点,且BF=DE.求证:AE∥CF.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四边形ABCD、DEFG都是正方形,连接AE、CG、AE与CG相交于点M,CG与AD相交于点N.

求证:(1)
(2)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,BF=DE.求证:四边形AFCE是平行四边形.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)已知:如图1,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.
(2)如图2,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA.求:劣弧BC的长.(结果保留π)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于F,连结BF.

(1)求证:CF=BD;
(2)若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并证明你的结论.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(1)知识再现
如图(1):若点A,B在直线l同侧,A,B到l的距离分别是3和2,AB=4,现在直线l上找一点P,使AP+BP的值最小,做法如下;
作点A关于直线l的对称点A′,连接BA′,与直线l的交代就是所求的点P,线段BA′的长度即为AP+BP的最小值,请你求出这个最小值.
(2)实践应用
①如图(2),⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则PA+PC的最小值是              
②如图(3),Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(1,0),点P为斜边OB上的一动点,则PA+PC的最小值为          
③如图(4),菱形ABCD中AB=2,∠A=120°,点P,Q,K,分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为            
④如图(5),在Rt△ABC中,∠C=90°,∠B=60°,点D是BC边上的点,CD=,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则△PEB的周长的最小值是      
(3)拓展延伸
如图(6),在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD,保留作图痕迹,不必写出作法.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图:已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.

(1)求证:四边形AECF是平行四边形;
(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长 .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证、再写出证明过程).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在□ABCD中,E、F分别在AD、BC边上,且AE=CF.请你猜想BE与DF的关系,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.

(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;
(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF的面积和△CEF的周长是否发生变化?如果不变,求出这个定值;如果变化,求出最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,AD=8,OD=OB,□ABCD的面积为24,求平行四边形的4个顶点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,保留作图痕迹),并猜想BE与CD的关系:___________;你是通过证明_______________ 得到的。
(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?并说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.

(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:
(1)在图①中画一条线段MN,使MN=
(2)在图②中画一个△ABC,使其三边长分别为3,

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质解答题