如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
(本小题10分)如图①,将两个完全相同的三角形纸片和重合放置,其中90°,30°,.(1)操作发现如图②,固定△,将△绕点旋转,当点恰好落在边上时,m]①= °,旋转角α= °(0<α<90),线段与的位置关系是 ;②设△的面积为,△的面积为,则与的数量关系是 ;(2)猜想论证当△绕点旋转到图③所示的位置时,小明猜想(Ⅰ)中与的数量关系仍然成立,并尝试分别作出了△和△中,边上的高,,请你证明小明的猜想;(3)拓展探究如图④,60°,平分,,∥交于点.若在射线上存在点,使,请直接写出相应的的长.
(本小题10分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.
(本小题10分)如图,两座建筑物的水平距离为30m,从点测得点的俯角为35°,测得点的俯角为43°,求这两座建筑物的高度(结果保留小数点后1 位,参考数据,,,,,).
(本小题10分)已知AB,BC,CD分别与⊙相切于E,F,G三点,且AB∥CD,连接OB,OC.(1)如图①,求∠BOC的度数;(2)如图②,延长CO交⊙O于点M,过点M做MN∥OB交CD于点N,当OB=6,OC=8时,求⊙的半径及MN的长.
(本小题8分)已知抛物线y=+bx+c过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.