初中数学

请阅读下列材料:
问题:如图①,将菱形ABCD和菱形BEFG拼接在一起,使得点A,B,E在同一条直线上,点G在BC边上,P是线段DF的中点,连接PG,PC.若∠ABC=120°,试探究PG与PC的位置关系及∠PCG的大小.小明同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小明的思路,探究并解决下列问题:

(1)直接写出上面问题中线段PG与PC的位置关系及∠PCG的大小;
(2)将图①中的菱形BEFG绕点B顺时针旋转,使点E恰好落在CB的延长线上,原问题中的其他条件不变(如图②).你在(1)中得到的两个结论是否仍成立?写出你的猜想并加以证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB、AC上,且G、F分别是AB、AC的中点.
填空:GF的长度为________,等腰梯形DEFG的面积为________.
操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF’G’(如图2)探究:在运动过程中,四边形BDG’G能否为菱形?若能,请求出此时x的值;若不能,请说明理由.

 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知 E、F是四边形ABCD的对角线AC上的两点,AF="CE," DF="BE," DF‖BE。

(1) 试说明△AFD≌△CEB;
(2)试说明四边形ABCD是平行四边形。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图22-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
如图22-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
若三角尺GEF旋转到如图22-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,已知在平行四边形ABCD中,BE=DF,求证:AE=CF.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠BAC=120°,以BC为边向外作等边三角形△BCD,把△ABD绕着点D按顺时针方向旋转60°后得到△ECD,且A,C,E在一条直线上,若AB=3,AC=2,求∠BAD的度数与AD的长。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在□ABCD中,E、F分别在AD、BC边上,且AE=CF.请你猜想BE与DF的关系,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.

(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;
(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF的面积和△CEF的周长是否发生变化?如果不变,求出这个定值;如果变化,求出最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,AD=8,OD=OB,□ABCD的面积为24,求平行四边形的4个顶点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,保留作图痕迹),并猜想BE与CD的关系:___________;你是通过证明_______________ 得到的。
(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?并说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.

(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:
(1)在图①中画一条线段MN,使MN=
(2)在图②中画一个△ABC,使其三边长分别为3,

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12cm,DC=14cm,把三角板DCE绕点C逆时针旋转15°得到△(如图2).这时AB与相交于点O,与相交于点F.

(1)填空:∠=     °;
(2)请求出△的内切圆半径;
(3)把△绕着点C逆时针再旋转度()得△,若△为等腰三角形,求的度数(精确到0.1°).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

将□ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.
求证:△ABE≌△AGF.
连结AC,若□ABCD的面积等于8,,试求y与x之间的函数关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质解答题