初中数学

(本题满分6分)如图,在△ABC中,∠ACB=90°,D是BC中点,DE⊥BC,CE∥AD,若AC=2,CE=4.求四边形ACEB的周长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:如图,在四边形ABCD中,BC<DC,∠BCD=60º,∠ADC=45º,CA平分∠BCD,求四边形ABCD的面积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,是同一直线上的三个点,四边形与四边形都是正方形,连结
观察图形,猜想之间的大小关系,并证明你的结论;
若延长于点,求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在□ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.
(1)求证:△ADE≌△CBF ;
(2)当AD⊥BD时,请你判断四边形BFDE的形状,并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本题6分)  如图,在梯形中, 两点在边上,且四边形是平行四边形.

(1)有何等量关系?请说明理由;
(2)当时,求证:平行四边形是矩形.

来源:
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,梯形ABCD中,ADBC,对角线BD的垂直平分线与两底ADBC分别交于点EF,判断四边形BEDF的形状并说明理由。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在□ABCD中,E、F分别在AD、BC边上,且AE=CF.请你猜想BE与DF的关系,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.

(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;
(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF的面积和△CEF的周长是否发生变化?如果不变,求出这个定值;如果变化,求出最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,AD=8,OD=OB,□ABCD的面积为24,求平行四边形的4个顶点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形(尺规作图,保留作图痕迹),并猜想BE与CD的关系:___________;你是通过证明_______________ 得到的。
(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?并说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.

(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:
(1)在图①中画一条线段MN,使MN=
(2)在图②中画一个△ABC,使其三边长分别为3,

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12cm,DC=14cm,把三角板DCE绕点C逆时针旋转15°得到△(如图2).这时AB与相交于点O,与相交于点F.

(1)填空:∠=     °;
(2)请求出△的内切圆半径;
(3)把△绕着点C逆时针再旋转度()得△,若△为等腰三角形,求的度数(精确到0.1°).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

将□ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处.
求证:△ABE≌△AGF.
连结AC,若□ABCD的面积等于8,,试求y与x之间的函数关系式.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质解答题