(11·柳州)如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形的个数共有
A.12个 | B.9个 | C.7个 | D.5个 |
(11·柳州)如图,阴影部分是一块梯形铁片的残余部分,量得∠A=100º,∠B=115º,则梯形另外两个底角的度数分别是
A.100º、115º | B.100º、65º | C.80º、115º | D.80º、65º |
如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:① CE=BD; ②△ADC是等腰直角三角形;
③∠ADB=∠AEB; ④ CD·AE=EF·CG;
一定正确的结论有
A.1个 | B.2个 | C.3个 | D.4个 |
如图,在梯形ABCD中,AB∥CD,AD=BC,点E,F,G,H分别是AB,BC,CD,DA的中点,则下列结论一定正确的是(■).
A.∠HGF=∠GHE | B.∠GHE=∠HEF |
C.∠HEF=∠EFG | D.∠HGF=∠HEF |
如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是( )
A.1个 | B.2个 |
C.3个 | D.4个 |
如图,矩形ABCD申,对角线AC、BD相交于点0,∠AOB=600,AB=5,则AD的长是( ).
(A)5 (B)5 (C)5 (D)10
正多边形的一个内角为135°,则该多边形的边数为
A.9 | B.8 | C.7 | D.4 |
正方形纸片折一次,沿折痕剪开,能剪得的图形是
A.锐角三角形 | B.钝角三角形 | C.梯形 | D.菱形 |
(11·西宁)用直尺和圆规作一个菱形,如图4,能得到四边形ABCD是菱形的依据是
A.一组邻边相等的四边形是菱形 | B.四边都相等的四边形是菱形 |
C.对角线互相垂直的平行四边形是菱形 | D.每条对角线平分一组对角的平行四边形是菱形 |
(11·西宁)用直尺和圆规作一个菱形,如图4,能得到四边形ABCD是菱形的依据是
A.一组邻边相等的四边形是菱形 | B.四边都相等的四边形是菱形 |
C.对角线互相垂直的平行四边形是菱形 | D.每条对角线平分一组对角的平行四边形是菱形 |
(11·台州)在梯形ABCD中,AD∥BC,∠ABC=90º,对角线AC、BD相交于
点O.下列条件中,不能判断对角线互相垂直的是【 】
A.∠1=∠2 B.∠1=∠3
C.∠2=∠3 D.OB2+OC2=BC2
如图,把一张矩形纸片ABCD沿对角线BD折叠,使点C落
在E处,BE与AD相交于F,下列结论:①BD2=AD2+AB2
②△ABF≌△EDF ③④AD=BD·cos45°正确的是( )
A.①② | B.②③ | C.①④ | D.③④ |
如图,把一张矩形纸片ABCD沿对角线BD折叠,使点C落
在E处,BE与AD相交于F,下列结论:①BD2=AD2+AB2
②△ABF≌△EDF ③④AD=BD·cos45°正确的是( )
A.①② | B.②③ | C.①④ | D.③④ |
在一个四边形ABCD中,依次连结各边中点的四边形是菱形,则对角线AC与BD需要满足条件 ( )
A. 垂直 B. 相等 C.垂直且相等 D. 不再需要条件
如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为
A.14 | B.16 | C.20 | D.28 |