(11·西宁)用直尺和圆规作一个菱形,如图4,能得到四边形ABCD是菱形的依据是
A.一组邻边相等的四边形是菱形 | B.四边都相等的四边形是菱形 |
C.对角线互相垂直的平行四边形是菱形 | D.每条对角线平分一组对角的平行四边形是菱形 |
(11·台州)在梯形ABCD中,AD∥BC,∠ABC=90º,对角线AC、BD相交于
点O.下列条件中,不能判断对角线互相垂直的是【 】
A.∠1=∠2 B.∠1=∠3
C.∠2=∠3 D.OB2+OC2=BC2
如图,把一张矩形纸片ABCD沿对角线BD折叠,使点C落
在E处,BE与AD相交于F,下列结论:①BD2=AD2+AB2
②△ABF≌△EDF ③④AD=BD·cos45°正确的是( )
A.①② | B.②③ | C.①④ | D.③④ |
如图,把一张矩形纸片ABCD沿对角线BD折叠,使点C落
在E处,BE与AD相交于F,下列结论:①BD2=AD2+AB2
②△ABF≌△EDF ③④AD=BD·cos45°正确的是( )
A.①② | B.②③ | C.①④ | D.③④ |
在一个四边形ABCD中,依次连结各边中点的四边形是菱形,则对角线AC与BD需要满足条件 ( )
A. 垂直 B. 相等 C.垂直且相等 D. 不再需要条件
如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为
A.14 | B.16 | C.20 | D.28 |
如图4,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是( )
A.3 B.4 C.5 D.6
已知等腰梯形ABCD中,AB∥CD,对角线AC、BD相交于O,∠ABD = 30°,AC⊥BC,AB =" 8" cm,则△COD的面积为( ).
A.cm2 B.cm2 C.cm2 D.cm2
下列关于矩形的说法,正确的是( ).
A.对角线相等的四边形是矩形 | B.对角线互相平分的四边形是矩形 |
C.矩形的对角线互相垂直且平分 | D.矩形的对角线相等且互相平分 |
将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有( )
A.1种 | B.2种 | C.4种 | D.无数种 |
如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=( )
A.40° | B.50° | C.60° | D.80° |
如图,在四边形ABCD中,∠BAD=∠ADC=90°,AB=AD=,CD=,
点P在四边形ABCD的边上.若点P到BD的距离为,则点P的个数为【 】
A.1 | B.2 | C.3 | D.4 |
如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H
分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是【 】
A.7 B.9 C.10 D.11
如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值( )
A.2 |
B.4 |
C. |
D. |
如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是( )