初中数学

(本小题12分) 菱形ABCD的边长为2,∠BAD=60°,对角线AC,BD相交于点O,动点P在线段AC上从点A向点C运动,过P作PE∥AD,交AB于点E,过P作PF∥AB,交AD于点F,四边形QHCK与四边形PEAF关于直线BD对称. 设菱形ABCD被这两个四边形盖住部分的面积为S1,AP=x:

(1)对角线AC的长为     ;S菱形ABCD     
(2)用含x的代数式表示S1
(3)设点P在移动过程中所得两个四边形PEAF与QHCK的重叠部分面积为S2,当S2S菱形ABCD时,求x的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直角坐标系中菱形ABCD的位置如图所示,C.D两点的坐标分别为 (4,0)、(0,3).现有两动点P、Q分别从A、C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动,设运动时间为ts.

(1)菱形ABCD的边长是   ,面积是   , 高BE的长是   .(直接填写结果)
(2)探究下列问题:
①若点P的速度为1cm/s,点Q的速度为2 cm/s.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值;
②若点P的速度为1cm/s,点Q的速度变为kcm/s,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形,请探究当t=4s时的情形,并求出k的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题6分)矩形纸片ABCD中,AB=5,AD=4.

(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是             ;(不必说明理由)
(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,P为平行四边形ABCD内一点,过点P分别作AB、AD的平行线交平行四边形于E、F、G、H四点,若,则为 (   )

A.0.5  B.1  C.1.5  D.2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.

(1)已知:DE∥AC,DF∥BC.
①判断
四边形DECF一定是什么形状?并说明理由.
②裁剪
当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;
(2)折叠
请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在□ABCD中,点E、F分别在AB、CD上,且AE=CF.
(1)求证:△ADE≌△CBF;
(2)若DF=BF,求证:四边形DEBF为菱形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,等腰梯形ABCD中,AB=CD,AD∥BC,点E、F在BC上,且BE=CF.

(1)求证:AE=DF;
(2)若AD=EF,试证明四边形AEFD为矩形.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

矩形ABCD中,边长AB=4,边BC=2,M、N分别是边BC、CD上的两个动点,且始终保持AM⊥MN.则CN的最大为( )

A.1           B.       C.      D.2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知矩形纸片ABCD中,AB=24厘米,BC=10厘米.

(1)按如下操作:先将矩形纸片上下对折,而后左右对折,再沿对角线对折,而后展开得到图中的折痕四边形EFGH(如图1),求菱形EFGH的面积.
(2)如图2,将矩形纸片ABCD折叠,使点A与点C重合得折痕EF,则四边形AECF必为菱形,请加以证明.
(3)请通过一定的操作,构造一个菱形EFGH(不同于第(1)题中的特殊图形),使菱形的四个顶点分别落在矩形ABCD的四条边上(E、F、G、H分别在边AB、BC、CD、DA上,且不与矩形ABCD的顶点重合).
①请简述操作的方法,并在图3中画出菱形EFGH.
②求菱形EFGH的面积的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正方形ABCD的边长为3,点E,F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线EF向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程长为( )

A.12           B.9             C.4          D.6 

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图①,②在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个     三角形。
(2)如图③,在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;
(3)如图④,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?
 
          

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为      

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2,如此进行下去,得到四边形AnBnCnDn
①四边形A4B4C4D4是菱形;
②四边形A3B3C3D3是矩形;
③四边形A7B7C7D7周长为
④四边形AnBnCnDn面积为
上述结论正确的是(     )

A.①②③ B.②③④ C.①③④ D.①②③④
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是 (    )

A.20             B.18             C.16             D.10

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.

(1)试说明四边形EFCG是矩形;
(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中,
①矩形EFCG的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由;
②求点G移动路线的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质试题