点 是 内一点,过点 的最长弦的长为 ,最短弦的长为 ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|
如图,在平面直角坐标系 中,直线 与 相交于 , 两点,且点 在 轴上,则弦 的长为 .
如图是一位同学从照片上剪切下来的海上日出时的画面,"图上"太阳与海平线交于 , 两点,他测得"图上"圆的半径为10厘米, 厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则"图上"太阳升起的速度为
A. |
1.0厘米 分 |
B. |
0.8厘米 分 |
C. |
1.2厘米 分 |
D. |
1.4厘米 分 |
筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心 为圆心的圆,如图2.已知圆心 在水面上方,且 被水面截得的弦 长为6米, 半径长为4米.若点 为运行轨道的最低点,则点 到弦 所在直线的距离是
A. |
1米 |
B. |
米 |
C. |
2米 |
D. |
米 |
如图,在等腰 中, , ,按下列步骤作图:
①以点 为圆心,适当的长度为半径作弧,分别交 , 于点 , ,再分别以点 , 为圆心,大于 的长为半径作弧相交于点 ,作射线 ;
②分别以点 , 为圆心,大于 的长为半径作弧相交于点 , ,作直线 ,交射线 于点 ;
③以点 为圆心,线段 长为半径作圆.
则 的半径为
A. B.10C.4D.5
我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深 寸,锯道长 尺 尺 寸).问这根圆形木材的直径是 寸.
如图1是小明制作的一副弓箭,点 , 分别是弓臂 与弓弦 的中点,弓弦 .沿 方向拉动弓弦的过程中,假设弓臂 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点 拉到点 时,有 , .
(1)图2中,弓臂两端 , 的距离为 .
(2)如图3,将弓箭继续拉到点 ,使弓臂 为半圆,则 的长为 .
如图, 的半径 ,以 为圆心, 为半径的弧交 于 、 点,则
A. B. C. D.
如图,在半径为 的圆形铁片上切下一块高为 的弓形铁片,则弓形弦 的长为
A. B. C. D.
如图1,小敏利用课余时间制作了一个脸盆架,图2是它的截面图,垂直放置的脸盆与架子的交点为 , , ,脸盆的最低点 到 的距离为 ,则该脸盆的半径为 .
《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸 寸),锯道长1尺 尺 寸)”,问这块圆柱形木材的直径是多少?”
如图所示,请根据所学知识计算:圆柱形木材的直径 是
A.13寸B.20寸C.26寸D.28寸