如图, 、 、 、 是四根长度均为 的火柴棒,点 、 、 共线.若 , ,则线段 的长度是
A. |
|
B. |
|
C. |
|
D. |
|
如图,以等边三角形 的 边为直径画圆,交 于点 , 于点 ,连接 ,且 .
(1)求证: 是 的切线;
(2)求线段 的长度.
如图,正方形纸片 的边长为12,点 是 上一点,将 沿 折叠,点 落在点 处,连接 并延长交 于点 .若 ,则 的长为 .
如图,在 中, , , ,以点 为圆心, 的长为半径画弧,交 于点 ,交 于点 ,以点 为圆心, 的长为半径画弧,交 于点 ,交 于点 ,则图中阴影部分的面积为
A. B. C. D.
已知 和 都是等腰直角三角形 , .
(1)如图1,连接 , ,求证: ;
(2)将 绕点 顺时针旋转.
①如图2,当点 恰好在 边上时,求证: ;
②当点 , , 在同一条直线上时,若 , ,请直接写出线段 的长.
如图,已知 , , ,点 为射线 上一个动点,连接 ,将 沿 折叠,点 落在点 处,过点 作 的垂线,分别交 , 于 , 两点,当 为线段 的三等分点时, 的长为
A. |
|
B. |
|
C. |
或 |
D. |
或 |
已知菱形 的面积为 ,点 是一边 上的中点,点 是对角线 上的动点.连接 ,若 平分 ,则线段 与 的和的最小值为 ,最大值为 .
如图,矩形 中, , ,点 是 边上一点, ,连接 ,点 是 延长线上一点,连接 ,且 ,则 .
如图,在 中, ,由图中的尺规作图痕迹得到的射线 与 交于点 ,点 为 的中点,连接 ,若 ,则 的周长为
A. |
|
B. |
|
C. |
|
D. |
4 |
课本再现
(1)在证明"三角形内角和定理"时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与 相等的角是 ;
类比迁移
(2)如图2,在四边形 中, 与 互余,小明发现四边形 中这对互余的角可类比(1)中思路进行拼合:先作 ,再过点 作 于点 ,连接 ,发现 , , 之间的数量关系是 ;
方法运用
(3)如图3,在四边形 中,连接 , ,点 是 两边垂直平分线的交点,连接 , .
①求证: ;
②连接 ,如图4,已知 , , ,求 的长(用含 , 的式子表示).
在一次数学探究活动中,李老师设计了一份活动单:
已知线段 ,使用作图工具作 ,尝试操作后思考: (1)这样的点 唯一吗? (2)点 的位置有什么特征?你有什么感悟? |
“追梦”学习小组通过操作、观察、讨论后汇报:点 的位置不唯一,它在以 为弦的圆弧上(点 、 除外), .小华同学画出了符合要求的一条圆弧(如图 .
(1)小华同学提出了下列问题,请你帮助解决.
①该弧所在圆的半径长为 ;
② 面积的最大值为 ;
(2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为 ,请你根据图1证明 .
(3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形 的边长 , ,点 在直线 的左侧,且 .
①线段 长的最小值为 ;
②若 ,则线段 长为 .