初中数学

在等腰 ΔADE 中, AE = DE ΔABC 是直角三角形, CAB = 90 ° ABC = 1 2 AED ,连接 CD BD ,点 F BD 的中点,连接 EF

(1)当 EAD = 45 ° ,点 B 在边 AE 上时,如图①所示,求证: EF = 1 2 CD

(2)当 EAD = 45 ° ,把 ΔABC 绕点 A 逆时针旋转,顶点 B 落在边 AD 上时,如图②所示,当 EAD = 60 ° ,点 B 在边 AE 上时,如图③所示,猜想图②、图③中线段 EF CD 又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2021年黑龙江省龙东地区中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

某数学课外活动小组在学习了勾股定理之后,针对图1中所示的“由直角三角形三边向外侧作多边形,它们的面积 S 1 S 2 S 3 之间的关系问题”进行了以下探究:

类比探究

(1)如图2,在 Rt Δ ABC 中, BC 为斜边,分别以 AB AC BC 为斜边向外侧作 Rt Δ ABD Rt Δ ACE Rt Δ BCF ,若 1 = 2 = 3 ,则面积 S 1 S 2 S 3 之间的关系式为      

推广验证

(2)如图3,在 Rt Δ ABC 中, BC 为斜边,分别以 AB AC BC 为边向外侧作任意 ΔABD ΔACE ΔBCF ,满足 1 = 2 = 3 D = E = F ,则(1)中所得关系式是否仍然成立?若成立,请证明你的结论;若不成立,请说明理由;

拓展应用

(3)如图4,在五边形 ABCDE 中, A = E = C = 105 ° ABC = 90 ° AB = 2 3 DE = 2 ,点 P AE 上, ABP = 30 ° PE = 2 ,求五边形 ABCDE 的面积.

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

在线段 AB 的同侧作射线 AM BN ,若 MAB NBA 的平分线分别交射线 BN AM 于点 E F AE BF 交于点 P .如图,点点同学发现当射线 AM BN 交于点 C ;且 ACB = 60 ° 时,有以下两个结论:

APB = 120 ° ;② AF + BE = AB

那么,当 AM / / BN 时:

(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出 APB 的度数,写出 AF BE AB 长度之间的等量关系,并给予证明;

(2)设点 Q 为线段 AE 上一点, QB = 5 ,若 AF + BE = 16 ,四边形 ABEF 的面积为 32 3 ,求 AQ 的长.

来源:2016年浙江省杭州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1, ΔABC 是边长为 4 cm 的等边三角形,边 AB 在射线 OM 上,且 OA = 6 cm ,点 D O 点出发,沿 OM 的方向以 1 cm / s 的速度运动,当 D 不与点 A 重合时,将 ΔACD 绕点 C 逆时针方向旋转 60 ° 得到 ΔBCE ,连接 DE

(1)求证: ΔCDE 是等边三角形;

(2)如图2,当 6 < t < 10 时, ΔBDE 的周长是否存在最小值?若存在,求出 ΔBDE 的最小周长;若不存在,请说明理由;

(3)如图3,当点 D 在射线 OM 上运动时,是否存在以 D E B 为顶点的三角形是直角三角形?若存在,求出此时 t 的值;若不存在,请说明理由.

来源:2017年湖南省郴州市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = x 2 + bx + c x 轴于 A B 两点,其中点 A 的坐标为 ( 1 , 0 ) ,与 y 轴交于点 C ( 0 , - 3 )

(1)求抛物线的函数解析式;

(2)点 D y 轴上一点,如果直线 BD 与直线 BC 的夹角为 15 ° ,求线段 CD 的长度;

(3)如图2,连接 AC ,点 P 在抛物线上,且满足 PAB = 2 ACO ,求点 P 的坐标.

来源:2020年内蒙古鄂尔多斯市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

已知正方形,点为边的中点.

(1)如图1,点为线段上的一点,且,延长分别与边交于点

①求证:

②求证:

(2)如图2,在边上取一点,满足,连接于点,连接并延长交于点,求的值.

来源:2017年安徽省中考数学试卷
  • 更新:2020-12-22
  • 题型:未知
  • 难度:未知

初中数学直角三角形的性质试题