初中数学

如图, 已知: AB O 的弦, 过点 B BC AB O 于点 C ,过点 C O 的切线交 AB 的延长线于点 D ,取 AD 的中点 E ,过点 E EF / / BC DC 的延长线于点 F ,连接 AF 并延长交 BC 的延长线于点 G

求证:

(1) FC = FG

(2) A B 2 = BC · BG

来源:2016年陕西省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,在中,,动点从点出发,沿以每秒2个单位长度的速度向终点运动.过点于点(点不与点重合),作,边交射线于点.设点的运动时间为秒.

(1)用含的代数式表示线段的长;

(2)当点与点重合时,求的值;

(3)设重叠部分图形的面积为,求之间的函数关系式;

(4)当线段的垂直平分线经过一边中点时,直接写出的值.

来源:2018年吉林省长春市中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,在中,平分于点

求证:

来源:2017年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

在等边 ΔABC 中,

(1)如图1, P Q BC 边上的两点, AP = AQ BAP = 20 ° ,求 AQB 的度数;

(2)点 P Q BC 边上的两个动点(不与点 B C 重合),点 P 在点 Q 的左侧,且 AP = AQ ,点 Q 关于直线 AC 的对称点为 M ,连接 AM PM

①依题意将图2补全;

②小茹通过观察、实验提出猜想:在点 P Q 运动的过程中,始终有 PA = PM ,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:

想法1:要证明 PA = PM ,只需证 ΔAPM 是等边三角形;

想法2:在 BA 上取一点 N ,使得 BN = BP ,要证明 PA = PM ,只需证 ΔANP ΔPCM

想法3:将线段 BP 绕点 B 顺时针旋转 60 ° ,得到线段 BK ,要证 PA = PM ,只需证 PA = CK PM = CK

请你参考上面的想法,帮助小茹证明 PA = PM (一种方法即可).

来源:2016年北京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,已知OB、OC为△ABC的角平分线,EF∥BC交AB、AC于E、F,△AEF的周长为15,BC长为7,求△ABC的周长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年贵州省遵义市)如图,△ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交CA的延长线于点E,连接AD、DE.

(1)求证:D是BC的中点;
(2)若DE=3,BD—AD=2,求⊙O的半径;
(3)在(2)的条件下,求弦AE的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(年云南省曲靖市)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学等腰三角形的判定与性质解答题