如图,在ΔABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.
求证:AD=BC.
如图1,在直角坐标系 xoy 中,直线 l : y = kx + b 交 x 轴, y 轴于点 E , F ,点 B 的坐标是 ( 2 , 2 ) ,过点 B 分别作 x 轴、 y 轴的垂线,垂足为 A 、 C ,点 D 是线段 CO 上的动点,以 BD 为对称轴,作与 ΔBCD 成轴对称的△ BC ' D .
(1)当 ∠ CBD = 15 ° 时,求点 C ' 的坐标.
(2)当图1中的直线 l 经过点 A ,且 k = − 3 3 时(如图 2 ) ,求点 D 由 C 到 O 的运动过程中,线段 BC ' 扫过的图形与 ΔOAF 重叠部分的面积.
(3)当图1中的直线 l 经过点 D , C ' 时(如图 3 ) ,以 DE 为对称轴,作与 ΔDOE 成轴对称的△ DO ' E ,连接 O ' C , O ' O ,问是否存在点 D ,使得△ DO ' E 与△ CO ' O 相似?若存在,求出 k 、 b 的值;若不存在,请说明理由.
如图1,我们把对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形 ABCD 中, AB = AD , CB = CD ,问四边形 ABCD 是垂美四边形吗?请说明理由.
(2)性质探究:试探索垂美四边形 ABCD 两组对边 AB , CD 与 BC , AD 之间的数量关系.
猜想结论:(要求用文字语言叙述)
写出证明过程(先画出图形,写出已知、求证).
(3)问题解决:如图3,分别以 Rt Δ ACB 的直角边 AC 和斜边 AB 为边向外作正方形 ACFG 和正方形 ABDE ,连接 CE , BG , GE ,已知 AC = 4 , AB = 5 ,求 GE 长.
已知二次函数 y = x 2 + x 的图象,如图所示
(1)根据方程的根与函数图象之间的关系,将方程 x 2 + x = 1 的根在图上近似地表示出来(描点),并观察图象,写出方程 x 2 + x = 1 的根(精确到 0 . 1 ) .
(2)在同一直角坐标系中画出一次函数 y = 1 2 x + 3 2 的图象,观察图象写出自变量 x 取值在什么范围时,一次函数的值小于二次函数的值.
(3)如图,点 P 是坐标平面上的一点,并在网格的格点上,请选择一种适当的平移方法,使平移后二次函数图象的顶点落在 P 点上,写出平移后二次函数图象的函数表达式,并判断点 P 是否在函数 y = 1 2 x + 3 2 的图象上,请说明理由.
如图, AB 为 ⊙ O 的直径,弦 CD ⊥ AB ,垂足为点 P ,直线 BF 与 AD 的延长线交于点 F ,且 ∠ AFB = ∠ ABC .
(1)求证:直线 BF 是 ⊙ O 的切线.
(2)若 CD = 2 3 , OP = 1 ,求线段 BF 的长.
为深化义务教育课程改革,满足学生的个性化学习需求,某校就“学生对知识拓展,体育特长、艺术特长和实践活动四类选课意向”进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整),请根据图中信息,解答下列问题:
(1)求扇形统计图中 m 的值,并补全条形统计图;
(2)在被调查的学生中,随机抽一人,抽到选“体育特长类”或“艺术特长类”的学生的概率是多少?
(3)已知该校有800名学生,计划开设“实践活动类”课程每班安排20人,问学校开设多少个“实践活动类”课程的班级比较合理?