已知等腰三角形的周长是10,底边长 是腰长 的函数,则下列图象中,能正确反映 与 之间函数关系的图象是
A.B.
C.D.
如图, 是 的切线,点 为切点, 交 于点 , ,点 在 上, .则 等于
A. |
|
B. |
|
C. |
|
D. |
|
如图,正方形 的对角线交于点 ,点 、 分别在 、 上 ,且 , 、 的延长线交于点 , 、 的延长线交于点 ,连接 .
(1)求证: .
(2)若正方形 的边长为4, 为 的中点,求 的长.
如图,四边形 为平行四边形,连接 ,且 .请用尺规完成基本作图:作出 的角平分线与 交于点 .连接 交 于点 ,交 于点 ,猜想线段 和线段 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)
如图,把含 的直角三角板 放置在正方形 中, ,直角顶点 在正方形 的对角线 上,点 , 分别在 和 边上, 与 交于点 ,且点 为 的中点,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
如图,点 , , , 共线, , ,添加一个条件,不能判断 的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , ,以点 为圆心, 长为半径作弧,交直线 于点 ,连结 ,则 的度数是 .
为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星 , , , , 是正五角星的五个顶点),则图中 的度数是 度.
如图, 中, , , ,将 沿 翻折,使点 与点 重合,则 的长为
A. |
|
B. |
2 |
C. |
|
D. |
|
如图,四边形 为菱形, ,延长 到 ,在 内作射线 ,使得 ,过点 作 ,垂足为 ,若 ,则对角线 的长为 (结果保留根号)
如图,在正方形 中,点 在 边上,连接 , 的平分线 与 边交于点 ,与 的延长线交于点 .设 .
(1)若 , ,求线段 的长.
(2)连接 ,若 ,
①求证:点 为 边的中点.
②求 的值.
如图,在 中, , , , , 分别为 , , 的中点,若 ,则 的长度为
A. B.1C. D.
如图,在四边形 中, 是 边的中点,连接 并延长,交 的延长线于点 , .添加一个条件使四边形 是平行四边形,你认为下面四个条件中可选择的是
A. B. C. D.