特例感知
(1)如图1,对于抛物线,,,下列结论正确的序号是 ;
①抛物线,,都经过点;
②抛物线,的对称轴由抛物线的对称轴依次向左平移个单位得到;
③抛物线,,与直线的交点中,相邻两点之间的距离相等.
形成概念
(2)把满足为正整数)的抛物线称为“系列平移抛物线”.
知识应用
在(2)中,如图2.
①“系列平移抛物线”的顶点依次为,,,,,用含的代数式表示顶点的坐标,并写出该顶点纵坐标与横坐标之间的关系式;
②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:,,,,,其横坐标分别为,,,,为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.
③在②中,直线分别交“系列平移抛物线”于点,,,,,连接,,判断,是否平行?并说明理由.
如图,点 在 的边 上,用尺规作出了 ,作图痕迹中, 是
A.以点 为圆心、 的长为半径的弧
B.以点 为圆心、 的长为半径的弧
C.以点 为圆心、 的长为半径的弧
D.以点 为圆心、 的长为半径的弧
如图,点 是 延长线上一点,如果添加一个条件,使 ,则可添加的条件为 .(任意添加一个符合题意的条件即可)
如图,在 中, ,点 在 上.
(1)求作: ,使点 在 上,且 ;(要求:尺规作图,保留作图痕迹,不写作法)
(2)在(1)的条件下,若 .求证: .
如图, 、 、 、 是直线 上的四点, , , .
(1)求证: ;
(2)将 沿直线 翻折得到△ .
①用直尺和圆规在图中作出△ (保留作图痕迹,不要求写作法);
②连接 ,则直线 与 的位置关系是 .