初中数学

如图,四边形 ABCD 是边长为1的正方形,点 E 是射线 AB 上的动点(点 E 不与点 A ,点 B 重合),点 F 在线段 DA 的延长线上,且 AF = AE ,连接 ED ,将 ED 绕点 E 顺时针旋转 90 ° 得到 EG ,连接 EF FB BG .设 AE = x ,四边形 EFBG 的面积为 y ,下列图象能正确反映出 y x 的函数关系的是 (    )

A.

B.

C.

D.

来源:2020年辽宁省盘锦市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

已知二次函数 y = - x 2 + 2 x + 4 ,则下列关于这个函数图象和性质的说法,正确的是 (    )

A.

图象的开口向上

B.

图象的顶点坐标是 ( 1 , 3 )

C.

x < 1 时, y x 的增大而增大

D.

图象与 x 轴有唯一交点

来源:2020年辽宁省阜新市中考数学试卷
  • 更新:2021-01-16
  • 题型:未知
  • 难度:未知

抛物线 y = a x 2 + bx + c ( a < 0 ) x 轴的一个交点坐标为 ( - 1 , 0 ) ,对称轴是直线 x = 1 ,其部分图象如图所示,则此抛物线与 x 轴的另一个交点坐标是 (    )

A.

( 7 2 0 )

B.

( 3 , 0 )

C.

( 5 2 0 )

D.

( 2 , 0 )

来源:2020年辽宁省大连市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 A 的坐标为 ( 0 , 2 ) ,点 B 的坐标为 ( 4 , 2 ) .若抛物线 y = - 3 2 ( x - h ) 2 + k ( h k 为常数)与线段 AB 交于 C D 两点,且 CD = 1 2 AB ,则 k 的值为   

来源:2020年吉林省长春市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 - 3 ax + 3 的图象过点 A ( 6 , 0 ) ,且与 y 轴交于点 B ,点 M 在该抛物线的对称轴上,若 ΔABM 是以 AB 为直角边的直角三角形,则点 M 的坐标为       

来源:2020年江苏省无锡市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

请写出一个函数表达式,使其图象的对称轴为 y 轴:    

来源:2020年江苏省无锡市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

如图,二次函数 y = x 2 + bx 的图象与 x 轴正半轴交于点 A ,平行于 x 轴的直线 l 与该抛物线交于 B C 两点(点 B 位于点 C 左侧),与抛物线对称轴交于点 D ( 2 , - 3 )

(1)求 b 的值;

(2)设 P Q x 轴上的点(点 P 位于点 Q 左侧),四边形 PBCQ 为平行四边形.过点 P Q 分别作 x 轴的垂线,与抛物线交于点 P ' ( x 1 y 1 ) Q ' ( x 2 y 2 ) .若 | y 1 - y 2 | = 2 ,求 x 1 x 2 的值.

来源:2020年江苏省苏州市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c 经过 A ( 2 , 0 ) B ( 3 n - 4 , y 1 ) C ( 5 n + 6 , y 2 ) 三点,对称轴是直线 x = 1 .关于 x 的方程 a x 2 + bx + c = x 有两个相等的实数根.

(1)求抛物线的解析式;

(2)若 n < - 5 ,试比较 y 1 y 2 的大小;

(3)若 B C 两点在直线 x = 1 的两侧,且 y 1 > y 2 ,求 n 的取值范围.

来源:2020年江苏省南通市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

下列关于二次函数为常数)的结论:①该函数的图象与函数的图象形状相同;②该函数的图象一定经过点;③当时,的增大而减小;④该函数的图象的顶点在函数的图象上.其中所有正确结论的序号是   

来源:2020年江苏省南京市中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,反比例函数的图象经过点,点轴的负半轴上,轴于点为线段的中点.

(1)  ,点的坐标为  

(2)若点为线段上的一个动点,过点轴,交反比例函数图象于点,求面积的最大值.

来源:2020年江苏省连云港市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

二次函数的图象的顶点坐标为      

来源:2020年江苏省淮安市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

二次函数 y = a x 2 + bx + c ,若 ab < 0 a - b 2 > 0 ,点 A ( x 1 y 1 ) B ( x 2 y 2 ) 在该二次函数的图象上,其中 x 1 < x 2 x 1 + x 2 = 0 ,则 (    )

A.

y 1 = - y 2

B.

y 1 > y 2

C.

y 1 < y 2

D.

y 1 y 2 的大小无法确定

来源:2020年湖南省株洲市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“函数”,其图象上关于原点对称的两点叫做一对“点”.根据该约定,完成下列各题.

(1)在下列关于的函数中,是“函数”的,请在相应题目后面的括号中打“”,不是“函数”的打“”.

  

  

  

(2)若点与点是关于的“函数” 的一对“点”,且该函数的对称轴始终位于直线的右侧,求的值或取值范围.

(3)若关于的“函数” 是常数)同时满足下列两个条件:①,②,求该“函数”截轴得到的线段长度的取值范围.

来源:2020年湖南省长沙市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

,1,2,3五个数中随机选取一个数作为二次函数的值,则该二次函数图象开口向上的概率是  

来源:2020年湖南省岳阳市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,等腰直角 ΔABC 的直角顶点 C y 轴上,另两个顶点 A B x 轴上,且 AB = 4 ,抛物线经过 A B C 三点,如图1所示.

(1)求抛物线所表示的二次函数表达式.

(2)过原点任作直线 l 交抛物线于 M N 两点,如图2所示.

①求 ΔCMN 面积的最小值.

②已知 Q ( 1 , - 3 2 ) 是抛物线上一定点,问抛物线上是否存在点 P ,使得点 P 与点 Q 关于直线 l 对称,若存在,求出点 P 的坐标及直线 l 的一次函数表达式;若不存在,请说明理由.

来源:2020年湖南省永州市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

初中数学二次函数的性质试题