初中数学

如图,在平面直角坐标系中,函数的图象与等边三角形的边分别交于点,且,若,那么点的横坐标为  

来源:2019年湖北省荆门市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点 B 在第一象限, BA x 轴于点 A ,反比例函数 y = k x ( x > 0 ) 的图象与线段 AB 相交于点 C ,且 C 是线段 AB 的中点,点 C 关于直线 y = x 的对称点 C ' 的坐标为 ( 1 n ) ( n 1 ) ,若 ΔOAB 的面积为3,则 k 的值为 (    )

A.

1 3

B.

1

C.

2

D.

3

来源:2019年湖北省黄石市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系 xOy 中,点 A B C 为反比例函数 y = k x ( k > 0 ) 上不同的三点,连接 OA OB OC ,过点 A AD y 轴于点 D ,过点 B C 分别作 BE CF 垂直 x 轴于点 E F OC BE 相交于点 M ,记 ΔAOD ΔBOM 、四边形 CMEF 的面积分别为 S 1 S 2 S 3 ,则 (    )

A.

S 1 = S 2 + S 3

B.

S 2 = S 3

C.

S 3 > S 2 > S 1

D.

S 1 S 2 < S 3 2

来源:2019年湖南省株洲市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图, O 的半径为2,双曲线的解析式分别为 y = 1 x y = - 1 x ,则阴影部分的面积是 (    )

A.

4 π

B.

3 π

C.

2 π

D.

π

来源:2019年湖南省娄底市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数的图象与性质.列表:

0

1

2

3

1

2

1

0

1

2

描点:在平面直角坐标系中,以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点,如图所示.

(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;

(2)研究函数并结合图象与表格,回答下列问题:

①点在函数图象上,则    ;(填“”,“ ”或“

②当函数值时,求自变量的值;

③在直线的右侧的函数图象上有两个不同的点,且,求的值;

④若直线与函数图象有三个不同的交点,求的取值范围.

来源:2019年湖南省郴州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,点分别是正比例函数的图象与反比例函数的图象的交点,过点作轴于点,过点作轴于点,则四边形的面积为  

来源:2019年湖南省郴州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,一次函数的图象与反比例函数在第一象限的图象交于两点,与轴交于点

(1)求反比例函数的解析式;

(2)若点轴上,且的面积为5,求点的坐标.

来源:2019年湖南省常德市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,△ O A 1 B 1 ,△ A 1 A 2 B 2 ,△ A 2 A 3 B 3 是分别以 A 1 A 2 A 3 为直角顶点,一条直角边在 x 轴正半轴上的等腰直角三角形,其斜边的中点 C 1 ( x 1 y 1 ) C 2 ( x 2 y 2 ) C 3 ( x 3 y 3 ) 均在反比例函数 y = 4 x ( x > 0 ) 的图象上.则 y 1 + y 2 + + y 10 的值为 (    )

A.

2 10

B.

6

C.

4 2

D.

2 7

来源:2019年山东省淄博市中考数学试卷(a卷)
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,中,,顶点分别在反比例函数的图象上,则的值为  

来源:2019年山东省潍坊市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点在反比例函数的图象上运动,且始终保持线段的长度不变.为线段的中点,连接.则线段长度的最小值是  (用含的代数式表示).

来源:2019年山东省威海市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,点是直线与反比例函数图象的两个交点,轴,垂足为点,已知,连接

(1)求直线的表达式;

(2)的面积分别为.求

来源:2019年山东省聊城市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,中,顶点的坐标是轴,轴于点,顶点的纵坐标是的面积是24.反比例函数的图象经过点,求:

(1)反比例函数的表达式;

(2)所在直线的函数表达式.

来源:2019年山东省菏泽市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

在下列函数图象上任取不同两点 P 1 ( x 1 y 1 ) P 2 ( x 2 y 2 ) ,一定能使 y 2 - y 1 x 2 - x 1 < 0 成立的是 (    )

A.

y = 3 x - 1 ( x < 0 )

B.

y = - x 2 + 2 x - 1 ( x > 0 )

C.

y = - 3 x ( x > 0 )

D.

y = x 2 - 4 x + 1 ( x < 0 )

来源:2019年山东省德州市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,菱形 OABC 的边 OA x 轴的正半轴上,反比例函数 y = k x ( x > 0 ) 的图象经过对角线 OB 的中点 D 和顶点 C .若菱形 OABC 的面积为12,则 k 的值为 (    )

A.

6

B.

5

C.

4

D.

3

来源:2019年山东省滨州市中考数学试卷(a卷)
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形的顶点落在坐标原点,点、点分别位于轴,轴的正半轴,为线段上一点,将沿翻折,点恰好落在对角线上的点处,反比例函数经过点.二次函数的图象经过三点,则该二次函数的解析式为  .(填一般式)

来源:2019年四川省遂宁市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

初中数学反比例函数的性质试题