初中数学

甲、乙两人在一条长400米的直线跑道上同起点、同终点、同方向匀速跑步,先到终点的人原地休息.已知甲先出发3秒,在跑步过程中,甲、乙两人间的距离 y (米 ) 与乙出发的时间 x (秒 ) 之间的函数关系如图所示,则下列结论正确的个数是 (    )

①乙的速度为5米 / 秒;

②离开起点后,甲、乙两人第一次相遇时,距离起点12米;

③甲、乙两人之间的距离超过32米的时间范围是 44 < x < 89

④乙到达终点时,甲距离终点还有68米.

A.

4

B.

3

C.

2

D.

1

来源:2021年内蒙古赤峰市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

某商家正在热销一种商品,其成本为30元 / 件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元 / 件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量 y (件 ) 与售价 x (元 / 件)满足如图所示的函数关系(其中 40 x 70 ,且 x 为整数).

(1)写出 y x 的函数关系式;

(2)当售价为多少时,商家所获利润最大,最大利润是多少?

来源:2021年辽宁省营口市中考数学试卷
  • 更新:2021-08-19
  • 题型:未知
  • 难度:未知

甲、乙两人沿同一直道从 A 地去 B 地.甲比乙早 1 min 出发,乙的速度是甲的2倍.在整个行程中,甲离 A 地的距离 y 1 (单位: m ) 与时间 x (单位: min ) 之间的函数关系如图所示.

(1)在图中画出乙离 A 地的距离 y 2 (单位: m ) 与时间 x 之间的函数图象;

(2)若甲比乙晚 5 min 到达 B 地,求甲整个行程所用的时间.

来源:2021年江苏省南京市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过 a 天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数 y (万人)与各自接种时间 x (天 ) 之间的关系如图所示.

(1)直接写出乙地每天接种的人数及 a 的值;

(2)当甲地接种速度放缓后,求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围;

(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离 y (单位: km ) 与慢车行驶时间 t (单位: h ) 的函数关系如图,则两车先后两次相遇的间隔时间是 (    )

A.

5 3 h

B.

3 2 h

C.

7 5 h

D.

4 3 h

来源:2021年湖北省武汉市中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售 A B 两种型号的口罩9000只,共获利润5000元,其中 A B 两种型号口罩所获利润之比为 2 : 3 .已知每只 B 型口罩的销售利润是 A 型口罩的1.2倍.

(1)求每只 A 型口罩和 B 型口罩的销售利润;

(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中 B 型口罩的进货量不超过 A 型口罩的1.5倍,设购进 A 型口罩 m 只,这10000只口罩的销售总利润为 W 元.该药店如何进货,才能使销售总利润最大?

来源:2020年山东省烟台市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

今年植树节期间,某景观园林公司购进一批成捆的 A B 两种树苗,每捆 A 种树苗比每捆 B 种树苗多10棵,每捆 A 种树苗和每捆 B 种树苗的价格分别是630元和600元,而每棵 A 种树苗和每棵 B 种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.

(1)求这一批树苗平均每棵的价格是多少元?

(2)如果购进的这批树苗共5500棵, A 种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进 A 种树苗和 B 种树苗各多少棵?并求出最低费用.

来源:2020年山东省聊城市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:

型号

价格(元 / 只)

项目

成本

12

4

售价

18

6

(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?

(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.

来源:2020年山东省东营市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

小刚去超市购买画笔,第一次花60元买了若干支 A 型画笔,第二次超市推荐了 B 型画笔,但 B 型画笔比 A 型画笔的单价贵2元,他又花100元买了相同支数的 B 型画笔.

(1)超市 B 型画笔单价多少元?

(2)小刚使用两种画笔后,决定以后使用 B 型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支 B 型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的 B 型画笔 x 支,购买费用为 y 元,请写出 y 关于 x 的函数关系式.

(3)在(2)的优惠方案下,若小刚计划用270元购买 B 型画笔,则能购买多少支 B 型画笔?

来源:2020年山东省德州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

某经销商3月份用18000元购进一批 T 恤衫售完后,4月份用39000元购进一批相同的 T 恤衫,数量是3月份的2倍,但每件进价涨了10元.

(1)4月份进了这批 T 恤衫多少件?

(2)4月份,经销商将这批 T 恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出 a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出 a 件,然后将 b 件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.

①用含 a 的代数式表示 b

②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

我国传统的计重工具 - - 秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为 x (厘米)时,秤钩所挂物重为 y (斤 ) ,则 y x 的一次函数.下表中为若干次称重时所记录的一些数据.

x (厘米)

1

2

4

7

11

12

y (斤 )

0.75

1.00

1.50

2.75

3.25

3.50

(1)在上表 x y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?

(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?

来源:2020年浙江省绍兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为 20 km / h ,游轮行驶的时间记为 t ( h ) ,两艘轮船距离杭州的路程 s ( km ) 关于 t ( h ) 的图象如图2所示(游轮在停靠前后的行驶速度不变).

(1)写出图2中 C 点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.

(2)若货轮比游轮早36分钟到达衢州.问:

①货轮出发后几小时追上游轮?

②游轮与货轮何时相距 12 km

(2)①求出 B C D E 的坐标,利用待定系数法求解即可.

②分三种情形种情形分别构建方程求解即可.

来源:2020年浙江省衢州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

A B 两地相距200千米.早上 8 : 00 货车甲从 A 地出发将一批物资运往 B 地,行驶一段路程后出现故障,即刻停车与 B 地联系. B 地收到消息后立即派货车乙从 B 地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往 B 地.两辆货车离开各自出发地的路程 y (千米)与时间 x (小时)的函数关系如图所示.(通话等其他时间忽略不计)

(1)求货车乙在遇到货车甲前,它离开出发地的路程 y 关于 x 的函数表达式.

(2)因实际需要,要求货车乙到达 B 地的时间比货车甲按原来的速度正常到达 B 地的时间最多晚1个小时,问货车乙返回 B 地的速度至少为每小时多少千米?

来源:2020年浙江省宁波市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

某地区山峰的高度每增加1百米,气温大约降低 0 . 6 ° C ,气温 T ( ° C ) 和高度 h (百米)的函数关系如图所示.

请根据图象解决下列问题:

(1)求高度为5百米时的气温;

(2)求 T 关于 h 的函数表达式;

(3)测得山顶的气温为 6 ° C ,求该山峰的高度.

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.

(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?

(2)求该公司一个月销售这两种特产所能获得的最大总利润.

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学一次函数的应用试题