小红帮弟弟荡秋千(如图 ,秋千离地面的高度 与摆动时间 之间的关系如图2所示.
(1)根据函数的定义,请判断变量 是否为关于 的函数?
(2)结合图象回答:
①当 时, 的值是多少?并说明它的实际意义.
②秋千摆动第一个来回需多少时间?
某个函数具有性质:当 时, 随 的增大而增大,这个函数的表达式可以是 (只要写出一个符合题意的答案即可).
如图,四边形 为一个矩形纸片, , ,动点 自 点出发沿 方向运动至 点后停止, 以直线 为轴翻折,点 落在点 的位置.设 ,△ 与原纸片重叠部分的面积为 .
(1)当 为何值时,直线 过点 ?
(2)当 为何值时,直线 过 的中点 ?
(3)求出 与 的函数表达式.
同一温度的华氏度数 与摄氏度数 之间的函数表达式是 .若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为 .
如图,矩形 中, , ,点 在边 上, 与 相交于点 .设 , ,当 时, 关于 的函数解析式为 .
如图,在矩形 中, , ,点 为边 上的一点(与 、 不重合),四边形 关于直线 的对称图形为四边形 ,延长 交 于点 ,记四边形 的面积为 .
(1)若 ,求 的值;
(2)设 ,求 关于 的函数表达式.
阅读下面的材料:
如果函数满足:对于自变量的取值范围内的任意,,
(1)若,都有,则称是增函数;
(2)若,都有,则称是减函数.
例题:证明函数是减函数.
证明:设,
.
,
,.
.即.
.
函数是减函数.
根据以上材料,解答下面的问题:
已知函数,
,
(1)计算: , ;
(2)猜想:函数是 函数(填“增”或“减” ;
(3)请仿照例题证明你的猜想.