如图①,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况,实验数据记录如下表:
(1)把上表中(x,y)的各组对应值作为点的坐标,在图②中描出相应的点,用平滑曲线连接这些点;
(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;
(3)当砝码的质量为24 g时,活动托盘B与点O的距离是多少?
(4)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?
已知y=y1y2,y1与x成正比例,y2与x+3成反比例,当x="0" 时,y=2;当x=3时,y=2;求y与x的函数关系式。
A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间 x(小时)之间的函数图像.
(1)求甲车返回过程中y与x之间的函数解析式,并写出x的取值范围;
(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.
如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(12,0)、(12,6),直线y=-x+b与y轴交于点P,与边OA交于点D,与边BC交于点E.
若直线y=-x+b平分矩形OABC的面积,求b的值;
在(1)的条件下,当直线y=-x+b绕点P顺时针旋转时,与直线BC和x轴分别交于点N、M,问:是否存在ON平分∠CNM的情况?若存在,求线段DM的长;若不存在,请说明理由;
在(1)的条件下,将矩形OABC沿DE折叠,若点O落在边BC上,求出该点坐标;若不在边BC上,求将(1)中的直线沿y轴怎样平移,使矩形OABC沿平移后的直线折叠,点O恰好落在边BC上
如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线//BC,交直线CD于点F.将直线向右平移,设平移距离BE为(t0),直角梯形ABCD被直线扫过的面积(图中阴影部份)为S,S关于的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
梯形上底的长AB=
直角梯形ABCD的面积=
写出图②中射线NQ表示的实际意义;
当时,求S关于的函数关系式;
当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1: 3.
(10分)某人在银行的信用卡存入2万元,每次取出50元,若卡内余额为 y(元),取钱的次数为x.(利息忽略不计)
(1)、写出y与x之间的函数关系式,并求出自变量的取值范围?
(2)、取多少次钱以后,余额为原存款的四分之一?
如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每秒1个单位长的速度向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.将线段CP的中点绕点P按顺时针方向旋转90°得点D,点D随点P的运动而运动,连接DP、DA.
请用含t的代数式表示出点D的坐标;
求t为何值时,△DPA的面积最大,最大为多少
在点P从O向A运动的过程中,△DPA能否成为直角三角形?若能,求t的值.
若不能,请说明理由;
请直接写出随着点P的运动,点D运动路线的长.
夏天容易发生腹泻等肠道疾病,某市医药公司的甲、乙两仓库分别存有医治腹泻的药品80箱和70箱,现需要将库存的药品调往A地100箱和B地50箱。已知从甲、乙两仓库运送药品到两地的费用(元/箱)如下表所示:
设从甲仓库运送到A地的药品为箱,求总费用(元)与(箱)之间的函数关系式,并写出的取值范围
求出最低费用,并说明总费用最低时的调配方案
直线=(k≠0)与坐标轴分别交于A、B两点,OA、OB的长分别
是方程=0的两根(OA>OB).动点P从O点出发,沿路线O→B→A以每
秒1个单位长度的速度运动,到达A点时运动停止.
直接写出A、B两点的坐标;
设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式;
当S=12时,求出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、
P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:
若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的.
求y与x之间的函数关系式;
由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润.
温州市有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售。
设天后每千克该野生菌的市场价格为元,试写出与之间的函数关系式;
若存放天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试写出与之间的函数关系式;
李经理将这批野生菌存放多少天后出售可获得最大利润元?
(利润=销售总额-收购成本-各种费用)
某文印店,一次性复印收费(元)与复印面数(8开纸)(面)的函数关系如图所示:
从图象中可看出:复印超过50面的部分每面收费 元,复印200面平均每面收费 元;
两同学各需要复印都不多于50面的资料,他们合起来去该店复印,结果比各自独去复印两人共节省2元钱,问其中一位同学所需复印的面数不能少于多少面?
如图,已知抛物线经过O(0,0),A(4,0),B(3,)三点,连接AB,过点B作BC∥轴交该抛物线于点C.
求这条抛物线的函数关系式.
两个动点P、Q分别从O、A同时出发,以每秒1个单位长度的速度运动. 其中,点P沿着线段0A向A点运动,点Q沿着线段AB向B点运动. 设这两个动点运动的时间为(秒) (0<≤2),△PQA的面积记为S.
① 求S与的函数关系式;
② 当为何值时,S有最大值,最大值是多少?并指出此时△PQA的形状;
是否存在这样的值,使得△PQA是直角三角形?若存在,请直接写出此时P、Q两点的坐标;若不存在,请说明理由.
某超市经销一种销售成本为60元的商品,据超市调查发现,如果按每件70元销售,一周能销售500件,若销售单价每涨1元,每周销售减少10件,设销售价为每件x元(x≥70),一周的销售量为y件.
写出y与x的函数关系式(标明x的取值范围).
设一周的销售利润为w,写出w与x的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?
在超市对该商品投入不超过15000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?