直线=(k≠0)与坐标轴分别交于A、B两点,OA、OB的长分别是方程=0的两根(OA>OB).动点P从O点出发,沿路线O→B→A以每秒1个单位长度的速度运动,到达A点时运动停止.直接写出A、B两点的坐标;设点P的运动时间为t(秒),△OPA的面积为S,求S与t之间的函数关系式;当S=12时,求出点P的坐标,此时,在坐标轴上是否存在点M,使以O、A、P、M为顶点的四边形是梯形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
先化简代数式,然后选取一个使原式有意义的的值代入求值。
计算 1) 2) 3) 4)
解下列不等式(组),并把解集表示在数轴上 1)2)3)4)
如图已知二次函数图象的顶点为原点, 直线的图象与该二次函数的图象交于点(8,8),直线与轴的交点为C,与y轴的交点为B. (1)求这个二次函数的解析式与B点坐标; (2)为线段上的一个动点(点与不重合),过作轴的垂线与这个二次函数的图象交于D点,与轴交于点E.设线段PD的长为,点的横坐标为t,求与t之间的函数关系式,并写出自变量t的取值范围; (3)在(2)的条件下,在线段上是否存在点,使得以点P、D、B为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.
(本题10分)如图,已知等边三角形ABC,以边BC为直径的半圆与边AB、AC分别交于点D、点E,过点E作EF⊥AB,垂足为点F。 (1)判断EF与⊙O的位置关系,并证明你的结论; (2)过点F作FH⊥BC,垂足为点H,若等边△ABC的边长为8,求FH的长。(结果保留根号)