设A共有9个不同的约数,B共有6个不同的约数,C共有8个不同的约数,这三个数中的任何两个都不整除,则这三个数之积的最小值是多少?
已知自然数A、B满足以下2个性质:(1)A、B不互质 (2)A、B的最大公约数与最小公倍数之和为35。那么A+B的最小值是多少?
有两个自然数,它们的和等于297,它们的最大公约数与最小公倍数之和等于693,这两个自然数的差是 .
如图,A、B、C是三个顺次咬和的齿轮,当A转4圈时,B恰好转3圈:当B转4圈时,C恰好转5圈,则A、B、C的齿数的最小数分别是多少?
两个整数A、B的最大公约数是C,最小公倍数是D,并且已知C不等于1,也不等于A或B,C+D=187,那么A+B等于多少?
有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?
试说明一个5位数,原序数与反序数的差一定是99的倍数(如:12367为原序数,那么它对应的反序数为76321,它们的差是99的倍数.)
把40,44,45,63,65,78,99,105这八个数平分成两组,使每组四个数的乘积相等。
有3堆小石子,每次允许进行如下操作:从每堆中取走同样数目的小石子,或是将其中的某一石子数是偶数的堆中的一半石子移入另外的一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问,能否做到:
⑴某2堆石子全部取光?
⑵3堆中的所有石子都被取走?