如图10-19所示,空中有水平向右的匀强电场和垂直于纸面向外的匀强磁场,质量为m,带电量为+q的滑块沿水平向右做匀速直线运动,滑块和水平面间的动摩擦因数为μ,滑块与墙碰撞后速度为原来的一半。滑块返回时,去掉了电场,恰好也做匀速直线运动,求原来电场强度的大小。
如图10-18所示,带电粒子在真空环境中的匀强磁场里按图示径迹运动。径迹为互相衔接的两段半径不等的半圆弧,中间是一块薄金属片,粒子穿过时有动能损失。试判断粒子在上、下两段半圆径迹中哪段所需时间较长?(粒子重力不计)
如图10-16所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角,已知带电粒子质量m=3×10-20kg,电量q=10-13C,速度v0=105m/s,磁场区域的半径R=3×10-1m,不计重力,求磁场的磁感应强度。
摆长为ι的单摆在匀强磁场中摆动,摆动平面与磁场方向垂直,如图10-14所示。摆动中摆线始终绷紧,若摆球带正电,电量为q,质量为m,磁感应强度为B,当球从最高处摆到最低处时,摆线上的拉力T多大?
如图10-11所示,用绝缘丝线悬挂着的环形导体,位于与其所在平面垂直且向右的匀强磁场中,若环形导体通有如图所示方向的电流I,试判断环形导体的运动情况。
有一自由的矩形导体线圈,通以电流I′。将其移入通以恒定电流I的长直导线的右侧。其ab与cd边跟长直导体AB在同一平面内且互相平行,如图10-9所示。试判断将该线圈从静止开始释放后的受力和运动情况。(不计重力)
如图28-1所示,X轴上方有匀强磁场B,下方有匀强电场E。电量为q、质量为m、重力不计的粒子y轴上。X轴上有一点N(L.0),要使粒子在y轴上由静止释放而能到达N点,问:(1)粒子应带何种电荷? (2)释放点M应满足什么条件? (3)粒子从M点运动到N点经历多长的时间?
平行金属,板长1.4米,两板相距30厘米,两板间
匀强磁场的B为1.3×10-3特斯拉,两板间所加电压
随时间变化关系如29-1图所示。当t=0时,有一个a
粒子从左侧两板中央以V=4×103米/秒的速度垂直于磁
场方向射入,如29-2图所示。不计a粒子的重力,求:
该粒子能否穿过金属板间区域?若不能,打在何处?若能, 则需多长时间? (已知a粒子电量q=3.2×10-19库,质量m=6.64×10-27千克)
(1)求电子在基态轨道上运动时的动能。
(2)有一群氢原子处于量子数n=3的激发态。画一能级图,在图14-1上用箭头标明这些氢原子能发出哪几条光谱线。
(3)计算这几条光谱线中波长最短的一条的波长。(其中静电力恒量K=9.0×109N·m2/C2,电子电量e=1.6×10-19C,普朗克恒量h=6.63×10-34J·s,真空中光速c=3.0×108m/s)。
如图11-12所示,长为6m的导体AB在磁感强度B=0.IT的匀强磁场中,以AB上的一点O为轴,沿着顺时针方向旋转。角速度ω=5rad/s,O点距A端为2m,求AB的电势差。
如图 11-20所示光滑平行金属轨道abcd,轨道的水平部分bcd处于竖直向上的匀强磁场中,bc部分平行导轨宽度是cd部分的2倍,轨道足够长。将质量相同的金属棒P和Q分别置于轨道的ab段和cd段。P棒位于距水平轨道高为h的地方,放开P棒,使其自由下滑,求P棒和Q棒的最终速度。
在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极?
电阻为R的矩形导线框abcd,边长ab=l、ad=h、质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图35-1所示.若线框恰好以恒定速度通过磁场,线框内产生的焦耳热是多少.(不考虑空气阻力)