在水平面上有两个物体A和B,质量分别为mA=2kg,mB=1kg,A与B相距s=9.5m,A以υA=10m/s的初速度向静止的B运动,与B发生碰撞后分开仍沿原来方向运动。已知A从开始到碰后停止共运动了6s钟,问碰后B运动多少时间停止?(已知两物体与水平面间的动摩擦因数均为μ=0.1,g=10m/s2)
列车沿水平轨道匀速前进,列车的总质量为M,在车尾,有一节质量为m的车厢脱钩,当列车司机发现时,列车已行驶了离脱钩的时间t,司机立即关闭发动机,如果列车所受到的阻力与其重力成正比,且关闭发动机前,机车的牵引力恒定,求当列车两部分都停止运动时,机车比末节车厢多运动了多长时间?
有一宇宙飞船,它的正面面积为S=0.98m2,以υ=2×103m/s的速度飞入宇宙微粒尘区,尘区每1m3空间有一个微粒,每一微粒平均质量m=2×10-4g,若要使飞船速度保持不变,飞船的牵引力应增加多少?(设微粒尘与飞船碰撞后附着于飞船上)
木块和铁块的质量分别为m和M,用线连接起来放在水中,木块的密度小于水的密度。放手后一起以加速度a加速下降,经时间t1后线断了,再经时间t2,木块速度为零,当木块速度为零时,铁块速度为多少?
如图1所示,质量为M的足够长木板置于光滑水平地面上,一质量为m的木块以水平初速度滑上长木板,已知木块与木板之间的摩擦因数为,求:
m的最终速度;
m与M相对滑动产生的焦耳热Q;
m在M上相对滑动的距离L。
跳伞运动员从2000m高处跳下,开始下落过程未打开降落伞,假设初速度为零,所受空气阻力与下落速度大小成正比,最大降落速度为vm=50m/s。运动员降落到离地面s=200m高处才打开降落伞,在1s内速度均匀减小到v1=5.0m/s,然后匀速下落到地面,试求运动员在空中运动的时间。
一个质量为m=2kg的物体,在F1=8N的水平推力作用下,从静止开始沿水平面运动了t1=5s,然后推力减小为F2=5N,方向不变,物体又运动了t2=4s后撤去外力,物体再经过t3=6s停下来。试求物体在水平面上所受的摩擦力。
如图5-9所示,半径为R的光滑圆形轨道固定在竖直面内。小球A、B质量分别为m、βm(β为待定系数)。A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为,碰撞中无机械能损失。重力加速度为g。试求:
待定系数β;
第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;
小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。
如图所示,人与冰车质量为M,球质量为m,开始均静止于光滑冰面上,现人将球以对地速度V水平向右推出,球与挡板P碰撞后等速率弹回,人接住球后又将球以同样的速度V向右推出……如此反复,已知M =" 16" m,试问人推球几次后将接不到球?
如图所示,一块足够长的木板,放在光滑水平面上,在木板上自左向右并非放有序号是1,2,3,…,n的物体,所有物块的质量均为m,与木板间的动摩擦因数都相同,开始时,木板静止不动,第1,2,3,…n号物块的初速度分别是v,2 v,3 v,…nv,方向都向右,木板的质量与所有物块的总质量相等,最终所有物块与木板以共同速度匀速运动。设物块之间均无相互碰撞,木板足够长。试求:
所有物块与木板一起匀速运动的速度v;
第1号物块与木板刚好相对静止时的速度v;
通过分析与计算说明第k号(k<n=物块的最小速度v
质量为50㎏的人站在质量为150㎏(不包括人的质量)的船头上,船和人以0.20m/s的速度向左在水面上匀速运动,若人用t =10s的时间匀加速从船头走到船尾,船长L=5m,则船在这段时间内的位移是多少?(船所受水的阻力不计)
如图所示,滑块A、B的质量分别为
m1与m2,m1<m2,由轻质弹簧相连接置于水平的气垫导轨上,用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧。
两滑块一起以恒定的
|
速率v0向右滑动.突然轻绳断开.
当弹簧伸至本身的自然长度时,滑块A的速度如图所示,滑块质量为m,与水平地面间的动摩擦因数为0.1,它以的初速度由A点开始向B点滑行,AB=5R,并滑上光滑的半径为R的圆弧BC,在C点正上方有一离C点高度也为R的旋转平台,沿平台直径方向开有两个离轴心距离相等的小孔P、Q,旋转时两孔均能达到C点的正上方。若滑块滑过C点后P孔,又恰能从Q孔落下,则平台转动的角速度ω应满足什么条件?
如图所示,半径R=2m的四分之一粗糙圆弧轨道AB置于竖直平面内,轨道的B
端切线水平,且距水平地面高度为h=1.25m,现将一质量m=0.2kg的小滑块从A点由静止释放,滑块沿圆弧轨道运动至B点以v=5m/s的速度水平飞出(g取10m/s2).求:
小滑块沿圆弧轨道运动过程中所受摩擦力做的功;
小滑块经过B点时对圆轨道的压力大小;
小滑块着地时的速度大小和方向.
抛体运动在各类体育运动项目中很常见,如乒乓球运动。现讨论乒乓球发球问题.设球台长2L、网高h,乒乓球反弹前后水平分速度不变,竖直分速度大小不变、方向相反,且不考虑乒乓球的旋转和空气阻力(设重力加速度为g)
若球在球台边缘O点正上方高度为h1处以速度v1水平发出,落在球台的P1点(如图实线所示),求P1点距O点的距离x.;
若球在O点正上方以速度v2水平发出后.恰好在最高点时越过球网落在球台的P2点(如图虚线所示).求v2的大小.;
(3)若球在O点正上方水平发出后,球经反弹恰好越过球网且刚好落在对方球台边缘P3处,求发球点距O点的高度h3.。