如图所示,固定在水平面上的斜面倾角为α,磁感应强度为B的匀强磁场垂直于斜面向上。将质量为m、带电量为+q的滑块轻轻放置在斜面上,求滑块稳定滑动时速度的大小和方向(与图中虚线之间的夹角)(斜面与滑块之间的动摩擦因数)
如图,质量M="l" kg的木板静止在水平面上,质量m="l" kg、大小可以忽略的铁块静止在木板的右端。设最大摩擦力等于滑动摩擦力,已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板之间的动摩擦因数μ2=0.4,取g="10" m/s2.现给铁块施加一个水平向左的力F
(1)若力F恒为8 N,经1 s铁块运动到木板的左端。求:木板的长度L
(2)若力F从零开始逐渐增加,且木板足够长。试通过分析与计算,在图中作出铁块受到的摩擦力f随力F大小变化的图象
如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为,现有质量为m的小球以水平速度飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g)。求:
①物块A相对B静止后的速度大小;
②木板B至少多长。
如图所示,将一等腰直角棱镜ABC截去棱角ADE,使其截面DE平行于底面BC,可制成“道威棱镜”,这样就减小了棱镜的重量和杂散的内部反射。已知棱镜玻璃的折射率n=,棱边长cm,cm,一束平行于底边BC的单色光从DE边上的M点射入棱镜,求:
(i)光线进入“道威棱镜”时的折射角;
(ii)通过计算判断光线能否从BC边射出;
(ⅲ)光线在棱镜中传播所用的时间。
如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧。
(i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少?
(ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱?气体的温度变为多少?(大气压强P0=75cmHg,图中标注的长度单位均为cm)
如图所示,第二、三象限存在足够大的匀强电场,电场强度为E,方向平行于纸面向上,一个质量为m,电量为q的正粒子,在x轴上M点(-4r,0)处以某一水平速度释放,粒子经过y轴上N点(0,2r)进入第一象限,第一象限存在一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向外,第四象限存在另一个足够大的匀强磁场,其磁感应强度B=2,方向垂直于纸面向里,不计粒子重力,r为坐标轴每个小格的标度,试求:
(1)粒子初速度v0;
(2)粒子第1次穿过x轴时的速度大小和方向;
(3)画出粒子在磁场中运动轨迹并求出粒子第n次穿过x轴时的位置坐标。
一活塞将一定质量的理想气体封闭在汽缸内,初始时气体体积为3.0×10-3 m3.用DIS实验系统测得此时气体的温度和压强分别为300 K和1.0×105 Pa.推动活塞压缩气体,测得气体的温度和压强分别为320K和1.0×105Pa.
(1)求此时气体的体积.
(2)再保持温度不变,缓慢改变作用在活塞上的力,使气体压强变为8.0×104 Pa,求此时气体的体积.
如图所示,一微型电动机与一指示灯(白炽灯)串联,限流电阻,电源电动势,内阻,指示灯上标有“3V 1.5W”字样,微型电动机的线圈电阻,开关闭合时,指示灯和电动机均能正常工作。求:
(1)指示灯的电阻和通过它的电流;
(2)电动机的输入功率和输出功率
如图(a)所示,两块水平放置的平行金属板A、B,板长L="18.5" cm,两板间距d="3" cm,两板之间有垂直于纸面向里的匀强磁场,磁感应强度B=6.0×10-2 T,两板加上如图(b)所示的周期性变化的电压,t=0时A板带正电.已知t=0时,有一个质量m=1.0×10-12 kg,带电荷量q=+1.0×10-6 C的粒子,以速度v="600" m/s,从距A板 2.5 cm处,沿垂直于磁场、平行于两板的方向射入两板之间,若不计粒子的重力,取π=3.0,求:
1.粒子在t=0至t=1×10-4 s内做怎样的运动?位移多大?
2.带电粒子从射入到射出板间所用的时间.
如图(甲),MN、PQ两条平行的光滑金属轨道与水平面成θ = 30°角固定,M、P之间接电阻箱R,电阻箱的阻值范围为0~4Ω,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 0.5T。质量为m的金属杆a b水平放置在轨道上,其接入电路的电阻值为r。现从静止释放杆a b,测得最大速度为vm。改变电阻箱的阻值R,得到vm与R的关系如图(乙)所示。已知轨距为L = 2m,重力加速度g=l0m/s2,轨道足够长且电阻不计。
(1)当R = 0时,求杆a b匀速下滑过程中产生感生电动势E的大小及杆中的电流方向;
(2)求金属杆的质量m和阻值r;
(3)求金属杆匀速下滑时电阻箱消耗电功率的最大值Pm。
如图所示,PQ和EF为水平放置的平行金属导轨,间距为l=1.0 m,导体棒ab跨放在导轨上,棒的质量为m=20 g,棒的中点用细绳经轻滑轮与物体c相连,物体c的质量M=30 g.在垂直导轨平面方向存在磁感应强度B=0. 2 T的匀强磁场,磁场方向竖直向上,重力加速度g取10 m/s2.若导轨是粗糙的,且导体棒与导轨间的最大静摩擦力为导体棒ab重力的0.5倍,若要保持物体c静止不动,应该在棒中通入多大的电流?电流的方向如何?
如图所示,左侧装置内存在着匀强磁场和方向竖直向下的匀强电场,装置上下两极板间电势差为U,间距为L,右侧为“梯形”匀强磁场区域ACDH,其中,AH//CD, 。一束电荷量大小为q、质量不等的带电粒子(不计重力、可视为质点),从狭缝S1射入左侧装置中恰能沿水平直线运动并从狭缝S2射出,接着粒子垂直于AH、由AH的中点M射入“梯形”区域,最后全部从边界AC射出。若两个区域的磁场方向均水平(垂直于纸面向里)、磁感应强度大小均为B,“梯形”宽度,忽略电场、磁场的边缘效应及粒子间的相互作用。
(1)判定这束粒子所带电荷的种类,并求出粒子速度的大小;
(2)求出这束粒子可能的质量最小值和最大值;
(3)求出(2)问中偏转角度最大的粒子在“梯形”区域中运动的时间。
如图所示,PQ、MN两极板间存在匀强电场,MN极板右侧长、宽分别为2L、的虚线区域内有垂直纸面的匀强磁场B。现有一初速度为零、带电量为q、质量为m的离子(不计重力)从PQ极板出发,经电场加速后,从MN上的小孔A垂直进入磁场区域,并从NF边界上某点垂直于虚线边界射出。求:
(1)匀强磁场的方向;
(2)PQ、MN两极板间电势差U;
(3)若带点粒子能从NF边界射出,则PQ、MN两极板间电势差的范围是多少?
如图所示,固定的光滑金属导轨间距为L,导轨电阻不计,上端a、b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中.质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿轨道向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.已知弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.
(1)求初始时刻通过电阻R的电流I的大小和方向
(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a
(3)导体棒最终静止时弹簧的弹性势能为Ep,求导体棒从开始运动直到停止的过程中,电阻R上产生的焦耳热Q