如图所示,在第一象限有一匀强电场,场强大小为E,方向沿y轴负向;在x轴下方第四象限有一均强磁场,磁场方向垂直于纸面向里,磁感应强度为B.一质量为m、电荷量为q的带正电粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,粒子第二次经过x轴的M点,已知OP=,,不计重力.求:
M点与坐标原点O间的距离;
粒子从P点运动到M点所用的时间.
如右图所示,磁感应强度大小为B、方向垂直纸面向里的匀强磁场被约束在由边界ab、bc、cd形成的区域内(ab∥cd,bc⊥ab,ab和cd可以向右端无限延伸),一质量为m、电荷量为+q的带电粒子从bc边的中点O处,以大小为v的初速度垂直磁场方向射入此区域,初速度方向与bc边的夹角=30°.已知bc边的长度为L,粒子重力不计,试问:
⑴若粒子最终能从边界ab射出,则初速度v应满足什么条件?
⑵粒子在匀强磁场中运动的最长时间应为多少?
如图甲所示,在一水平放置的隔板MN的上方,存在一磁感应强度大小为B的匀强磁场,磁场方向如图所示。O为隔板上的一个小孔,通过O点可以从不同方向向磁场区域发射电量为+q,质量为m,速率为的粒子,且所有入射的粒子都在垂直于磁场的同一平面内运动。不计重力及粒子间的相互作用。
(1)如图乙所示,与隔板成450角的粒子,经过多少时间后再次打到隔板上?此粒子打到隔板的位置与小孔的距离为多少?
(2)所有从O点射入的带电粒子在磁场中可能经过区域的面积为多少?
(3) 若有两个时间间隔为t0的粒子先后射入磁场后恰好在磁场中给定的P点相遇,如图丙所示,则P与O之间的距离为多少?
如右图,在0≤x≤a区域内存在与xy平面垂直的匀强磁场,磁感应强度的大小为B.在t=0时刻,一位于坐标原点的粒子源在xy平面内发射出大量同种带电粒子,所有粒子的初速度大小相同,方向与y轴正方向的夹角分布在0~180°范围内.已知沿y轴正方向发射的粒子在t=t0时刻刚好从磁场边界上P(a,a)点离开磁场.
求:
粒子在磁场中做圆周运动半径及速度;
粒子的比荷q/m;
从粒子发射到全部粒子离开磁场所用的时间.
如图,在平面直角坐标系xoy内,第一象限的射线op与x轴夹角为30º,在∠pox范围之外存在垂直xoy面向里的匀强磁场,磁感应强度为B.一质量为m、带电量为q的正电粒子,从o点以沿y轴负方向的速度v出发仅受磁场力而运动。试求:
(1)粒子离开o点后,第三次经过磁场边界时的位置坐标;
(2)粒子在磁场中运动的总时间;
(3)若保持其它条件不变而将∠pox变为15º,粒子出发之后将总共几次穿越磁场边界?
如图所示,一个质量为m、电荷量为+q的带电粒子,不计重力,在a点以某一初速
度水平向左射入磁场区域Ⅰ,沿曲线abcd运动,ab、bc、cd都是半径为R的圆弧.粒子在每段圆弧上运动的时间都为t.规定垂直于纸面向外的磁感应强度为正,则磁场区域Ⅰ、Ⅱ、Ⅲ三部分的磁感应强度B随x变化的关系可能是图6中的 ( )
图6
如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小,磁场内有一块平面感光板,板面与磁场方向平行,在距的距离处,有一个点状的放射源S,它向各个方向发射粒子,粒子的速度都是,已知粒子的电荷与质量之比,现只考虑在图纸平面中运动的粒子,求上被粒子打中的区域的长度。
(12分)(2010·苏州模拟)质谱仪可测定同位素的组成.现有一束一价的钾39和钾41离
子经电场加速后,沿着与磁场和边界均垂直的方向进入匀强磁场中,
如图所示.测试时规定加速电压大小为U0,但在实验过程中加
速电压有较小的波动,可能偏大或偏小ΔU.为使钾39和钾41打在
照相底片上的区域不重叠,ΔU不得超过多少?(不计离子的重力)
如图所示,一个有界的匀强磁场,磁感应强度B=0.50T,磁场方向垂直于纸面向里,MN是磁场的左边界.在距磁场左边界MN的1.0m处有一个放射源A,内装放射物质(镭),发生α衰变生成新核Rn(氡).放在MN左侧的粒子接收器接收到垂直于边界MN方向射出的α粒子,此时接收器位置距直线OA的距离为1m.
(1)写出Ra的衰变方程;
(2)求衰变后Rn(氡)的速率(质子、中子的质量为1.6×10-27kg,电子电量e=1.6×10-19C).
如图,在第二象限的圆形区域I存在匀强磁场,区域半径为R,磁感应强度为B,且垂直于Oxy平面向里;在第一象限的区域II和区域III内分别存在匀强磁场,磁场宽度相等,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。质量为m、带电荷量q(q>0)的粒子a于某时刻从圆形区域I最高点Q(Q和圆心A连线与y轴平行)进入区域I,其速度v= 。已知a在离开圆形区域I后,从某点P进入区域II。该粒子a离开区域II时,速度方向与x轴正方向的夹角为30°;此时,另一质量和电荷量均与a相同的粒子b从P点进入区域II,其速度沿x轴正向,大小是粒子a的。不计重力和两粒子之间的相互作用力。求:
(1)区域II的宽度;
(2)当a离开区域III时,a、b两粒子的y坐标之差.
如图(a)所示,在以为圆心,内外半径分别为和的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差为常量,,,一电荷量为,质量为的粒子从内圆上的点进入该区域,不计重力。
⑴已知粒子从外圆上以速度射出,求粒子在点的初速度的大小。
⑵若撤去电场,如图(b),已知粒子从延长线与外圆的交点以速度射出,方向与延长线成角,求磁感应强度的大小及粒子在磁场中运动的时间。
⑶在图(b)中,若粒子从A点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?
(22分)如图所示,在两块水平金属极板间加有电压U构成偏转电场,一束比荷为带正电的粒子流(重力不计),以速度vo =104m/s沿水平方向从金属极板正中间射入两板。粒子经电场偏转后进入一具有理想边界的半圆形变化磁场区域,O为圆心,区域直径AB长度为L=1m,AB与水平方向成45°角。区域内有按如图所示规律作周期性变化的磁场,已知B0="0." 5T,磁场方向以垂直于纸面向外为正。粒子经偏转电场后,恰好从下极板边缘O点与水平方向成45°斜向下射入磁场。求:
(1)两金属极板间的电压U是多大?
(2)若T0 =0.5s,求t=0s时刻射人磁场的带电粒子在磁场中运动的时间t和离开磁场的位置。
(3)要使所有带电粒子通过O点后的运动过程中不再从AB两点间越过,求出磁场的变化周期T0应满足的条件。
扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆。其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为,磁场方向相反且垂直纸面。一质量为、电量为、重力不计的粒子,从靠近平行板电容器板处由静止释放,极板间电压为,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角
(1)当Ⅰ区宽度、磁感应强度大小时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为,求及粒子在Ⅰ区运动的时间
(2)若Ⅱ区宽度磁感应强度大小,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差(3)若、,为使粒子能返回Ⅰ区,求应满足的条件
(4)若,且已保证了粒子能从Ⅱ区右边界射出。为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B1、B2、L1、、L2、之间应满足的关系式。
在如图所示,x轴上方有一匀强磁场,磁感应强度的方向垂直于纸面向里,大小为B,x轴下方有一匀强电场,电场强度的大小为E,方向与y轴的夹角θ为45o且斜向上方。现有一质量为m电量为q的正离子,以速度v0由y轴上的A点沿y轴正方向射入磁场,该离子在磁场中运动一段时间后从x轴上的C点进入电场区域,该离子经C点时的速度方向与x轴夹角为45o。 不计离子的重力,设磁场区域和电场区域足够大。求:
|
(1)C点的坐标;
(2)离子从A点出发到第三次穿越x轴时的运动时间;如图所示,倾斜挡板NM上有一个小孔K,NM与水平挡板NP成60°角,K与N间的距离。现有质量为m,电荷量为q的正电粒子组成的粒子束,垂直于倾斜挡板NM,以速度v0不断射入,不计粒子所受的重力。
(1)若在NM和NP两档板所夹的区域内存在一个垂直于纸面向外的匀强磁场,NM和NP为磁场边界。粒子恰能垂直打在水平挡板NP上,求匀强磁场的磁感应强度的大小。
(2)若在NM和NP两档板所夹的区域内,只在某一部分区域存在一与(1)中大小相等方向相反的匀强磁场。从小孔K飞入的这些粒子经过磁场偏转后也能垂直打到水平挡板NP上(之前与挡板没有碰撞),求粒子在该磁场中运动的时间。
(3)若在(2)问中,磁感应强度大小未知,从小孔K飞入的这些粒子经过磁场偏转后能垂直打到水平挡板NP上(之前与挡板没有碰撞),求该磁场的磁感应强度的最小值。