高中物理

如图所示,真空中有一垂直于纸面向里的匀强磁场,其边界为同心圆,内、外半径分别为r和R.圆心处有一粒子源不断地沿半径方向射出质量为m、电荷量为q的带电粒子,其速度大小为,不计粒子重力.若,为使这些粒子不射出磁场外边界,匀强磁场磁感应强度至少为多大?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,C、D为平行正对的两金属板,在D板右方一边长为l=6.0 cm的正方形区域内存在匀强磁场,该区域恰好在一对平行且正对的金属板M、N之间,M、N两板均接地,距板的右端L=12.0 cm处放置一观察屏.在C、D两板间加上如图乙所示的交变电压,并从C板O处以每秒1 000个的频率均匀的源源不断地释放出电子,所有电子的初动能均为Ek0=120 eV,初速度方向均沿OO′直线,通过电场的电子从M、N的正中间垂直射入磁场.已知电子的质量为m=9.0×10-31 kg,磁感应强度为B=6.0×10-4 T.问:
(1) 电子从D板上小孔O′点射出时,速度的最大值是多大?
(2) 电子到达观察屏(观察屏足够大)上的范围有多大?
(3) 在uCD变化的一个周期内,有多少个电子能到达观察屏?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,在xoy平面直角坐标系第一象限内分布有垂直向外的匀强磁场,磁感应强度大小B=2.5×10-2T,在第二象限紧贴y轴和x轴放置一对平行金属板MN(中心轴线过y轴),极板间距d=0.4m,极板与左侧电路相连接。通过移动滑动头P可以改变极板MN间的电压。a、b为滑动变阻器的最下端和最上端(滑动变阻器的阻值分布均匀),a、b两端所加电压。在MN中心轴线上距y轴距离为L=0.4m处有一粒子源S,沿x轴正方向连续射出比荷为,速度为vo=2.0×104m/s带正电的粒子,粒子经过y轴进入磁场后从x轴射出磁场(忽略粒子的重力和粒子之间的相互作用)。

(1)当滑动头P在ab正中间时,求粒子射入磁场时速度的大小。
(2)当滑动头P在ab间某位置时,粒子射出极板的速度偏转角为,试写出粒子在磁场中运动的时间与的函数关系,并由此计算粒子在磁场中运动的最长时间。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如右图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°。一质量为m,带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中的磁感应强度的大小。(忽略粒子重力)。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,两平行金属板A、B长度为l,直流电源能提供的最大电压为U,位于极板左侧中央的粒子源可以沿水平方向向右连续发射质量为m、电荷量为-q、重力不计的带电粒子,射入板间的粒子速度均为。在极板右侧有一个垂直纸面向里的匀强磁场,磁感应强度为B,分布在环带区域中,该环带的内外圆的圆心与两板间的中心重合于O点,环带的内圆半径为R1。当变阻器滑动触头滑至b点时,带电粒子恰能从右侧极板边缘射向右侧磁场。

(1)问从板间右侧射出的粒子速度的最大值是多少?
(2)若粒子射出电场时,速度的反向延长线与所在直线交于点,试证明点与极板右端边缘的水平距离x=,即与O重合,所有粒子都好像从两板的中心射出一样;
(3)为使粒子不从磁场右侧穿出,求环带磁场的最小宽度d。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,有界匀强磁场的磁感应强度为B,区域足够大,方向垂直于纸面向里,直角坐标系xoy的y轴为磁场的左边界,A为固定在x轴上的一个放射源,内装镭核()沿着与+x成角方向释放一个粒子后衰变成氡核()。粒子在y轴上的N点沿方向飞离磁场,N点到O点的距离为l,已知OA间距离为粒子质量为m,电荷量为q,氡核的质量为

(1)写出镭核的衰变方程;
(2)如果镭核衰变时释放的能量全部变为粒子和氡核的动能,求一个原来静止的镭核衰变时放出的能量。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示为某一仪器的部分原理示意图,虚线OA、OB关于y轴对称,, OA、OB将xOy平面分为Ⅰ、Ⅱ、Ⅲ三个区域,区域Ⅰ、Ⅲ内存在水平方向的匀强电场,电场强度大小相等、方向相反。带电粒子自x轴上的粒子源P处以速度v0沿y轴正方向射出,经时间t到达OA上的M点,且此时速度与OA垂直。已知M到原点O的距离OM = a,不计粒子的重力。求:
(1)匀强电场的电场强度E的大小;
(2)为使粒子能从M点经Ⅱ区域通过OB上的N点,M、N点关于y轴对称,可在区域Ⅱ内加一垂直xOy平面的匀强磁场,求该磁场的磁感应强度的最小值和粒子经过区域Ⅲ到达x轴上Q点的横坐标;
(3)当匀强磁场的磁感应强度取(2)问中的最小值时,且该磁场仅分布在一个圆形区域内。由于某种原因的影响,粒子经过M点时的速度并不严格与OA垂直,成散射状,散射角为,但速度大小均相同,如图所示,求所有粒子经过OB时的区域长度。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,在半径为a的圆形区域内充满磁感应强度大小为的均匀磁场,其方向垂直于纸面向里.在圆形区域平面内固定放置一绝缘材料制成的边长为L=1.2a的刚性等边三角形框架,其中心位于圆形区域的圆心.边上点(DS=L/2)处有一发射带电粒子源,发射粒子的方向皆在图示平面内且垂直于边,发射粒子的电量皆为(>0),质量皆为,但速度有各种不同的数值.若这些粒子与三角形框架的碰撞均无机械能损失,并要求每一次碰撞时速度方向垂直于被碰的边.试问:(1)若发射的粒子速度垂直于边向上,这些粒子中回到点所用的最短时间是多少?(2)若发射的粒子速度垂直于边向下,带电粒子速度的大小取哪些数值时可使点发出的粒子最终又回到点?这些粒子中,回到点所用的最短时间是多少?(不计粒子的重力和粒子间的相互作用)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,在以坐标原点O为圆心,半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射人,带电粒子恰好做匀速直线运动,经t0时间从P点射出。

(1)电场强度的大小和方向。
(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经t0/2 时间恰从半圆形区域的边界射出,求粒子运动加速度大小。
(3)若仅撤去电场,带电粒子仍从O点射入但速度为原来的4倍,求粒子在磁场中运动的时间。
(4)若仅撤去电场, O点处有一带正电的粒子源电性、质量、电量及初速大小都一样。(不计重力)从O点沿各个方向以某一速度射入磁场都做半径为R/2的匀速圆周运动试用斜线在图中画出粒子在磁场中可能出现的区域。要求有简要的文字说明。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,带电平行金属板PQ和MN之间的距离为d;两金属板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B。如图建立坐标系,x轴平行于金属板,与金属板中心线重合,y轴垂直于金属板。区域I的左边界在y轴,右边界与区域II的左边界重合,且与y轴平行;区域II的左、右边界平行。在区域I和区域II内分别存在匀强磁场,磁感应强度大小均为B,区域I内的磁场垂直于Oxy平面向外,区域II内的磁场垂直于Oxy平面向里。一电子沿着x轴正向以速度v0射入平行板之间,在平行板间恰好沿着x轴正向做直线运动,并先后通过区域I和II。已知电子电量为e,质量为m,区域I和区域II沿x轴方向宽度均为。不计电子重力。

(1)求两金属板之间电势差U;
(2)求电子从区域II右边界射出时,射出点的纵坐标y;
(3)撤除区域I中的磁场而在其中加上沿x轴正向的匀强电场,使得该电子刚好不能从区域II的右边界飞出。求电子两次经过y轴的时间间隔t。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,真空室内存在一有右边界的匀强磁场区域,磁感应强度B=0.332T,磁场方向垂直于纸面向里,右边界cd为荧光屏(粒子打上去会发光)。在磁场中距荧光屏d=8cm处有一点状α粒子放射源S,可沿纸面向各个方向均匀放射初速率相同的α粒子,已知:α粒子的质量m=6.64×10-27kg,电荷量q = 3.2×10-19C,初速度v = 3.2×106m/s。(可能用到的三角函数:sin37°= 0.6,sin30°= 0.5)求:

(1)α粒子在磁场中作圆周运动的轨道半径R;
(2)荧光屏cd被α粒子射中而发光的区域长度L;
(3)若从放射源打出的α粒子总个数为3.6×1010个,则最终能打到荧光屏上的α粒子个数为多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,在一底边长为2L,θ=45°的等腰三角形区域内(O为底边中点)有垂直纸面向外的匀强磁场. 现有一质量为m,电量为q的带正电粒子从静止开始经过电势差为U的电场加速后,从O点垂直于AB进入磁场,不计重力与空气阻力的影响.

(1)粒子经电场加速射入磁场时的速度?
(2)磁感应强度B为多少时,粒子能以最大的圆周半径偏转后打到OA板?
(3)增大B,可延长粒子在磁场中的运动时间,求粒子在磁场中运动的极限时间.(不计粒子与AB板碰撞的作用时间,设粒子与AB板碰撞前后,电量保持不变并以相同的速率反弹)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板,两极板中心各有一小孔,两极板间电压的变化规律如图乙所示,正反向电压的大小均为,周期为。在时刻将一个质量为、电量为的粒子由静止释放,粒子在电场力的作用下向右运动,在时刻通过垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)

(1)求粒子到达时的速度大小和极板距离

(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。
(3)若已保证了粒子未与极板相撞,为使粒子在时刻再次到达,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,在一平面直角坐标系所确定的平面内存在着两个匀强磁场区域,以一、三象限角平分线为界,分界线为MNMN上方区域存在匀强磁场B1,垂直纸面向里,下方区城存在匀强磁场B2,也垂直纸面向里,且有B2 =2B1=0.2T,x正半轴与ON之间的区域没有磁场。在边界线MN上有坐标为(2、2)的一粒子发射源S,不断向Y轴负方向发射各种速率的带电粒子.所有粒子带电量均为-q,质量均为m(重力不计),其荷质比为c/kg。试问:

(1)  若S发射了两颗粒子,它们的速度分别为m/s和m/s,结果,经过一段时间,两颗粒子先后经过分界线ON上的点PP未画出),求SP的距离。
(2)  若S发射了一速度为m/s的带电粒子,经过一段时间,其第一次经过分界线MO上的点QQ未画出),求Q点的坐标。
(3)  若S发射了一速度为m/s的带电粒子,求其从发出到第三次经过x轴所花费的时间。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如右图a所示,间距为d的平行金属板MN与一对光滑的平行导轨相连,平行导轨间距L=d/2,一根导体棒ab以一定的初速度向右匀速运动,棒的右端存在一个垂直纸面向里,大小为B的匀强磁场。棒进入磁场的同时,粒子源P释放一个初速度为0的带电粒子,已知带电粒子质量为m,电量为q.粒子能从N板加速到M板,并从M板上的一个小孔穿出。在板的上方,有一个环形区域内存在大小也为B,垂直纸面向外的匀强磁场。已知外圆半径为2d, 里圆半径为d. 两圆的圆心与小孔重合(粒子重力不计)


(1)判断带电粒子的正负,并求当ab棒的速度为vo时,粒子到达M板的速度v;
(2)若要求粒子不能从外圆边界飞出,则v0的取值范围是多少?
(3) 若棒ab的速度v0只能是,则为使粒子不从外圆飞出,则可以控制导轨区域磁场的宽度S(如图b所示),那该磁场宽度S应控制在多少范围内

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中物理α粒子散射实验计算题