如图所示,光滑且足够长的平行金属导轨MN和PQ固定在同一水平面上,两导轨间距,电阻,导轨上静止放置一质量、电阻的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度的匀强磁场中,磁场的方向竖直向下,现用一外力沿水平方向拉杆,使之由静止起做匀加速运动并开始计时,若5s末杆的速度为2.5m/s,求:
(1)5s末时电阻上消耗的电功率;
(2)5s末时外力的功率.
(3)若杆最终以8m/s的速度作匀速运动,此时闭合电键S,射线源Q释放的粒子经加速电场C加速后从孔对着圆心进入半径的固定圆筒中(筒壁上的小孔只能容一个粒子通过),圆筒内有垂直水平面向下的磁感应强度为的匀强磁场。粒子每次与筒壁发生碰撞均无电荷迁移,也无机械能损失,粒子与圆筒壁碰撞5次后恰又从孔背离圆心射出,忽略粒子进入加速电场的初速度,若粒子质量,电量,则磁感应强度多大?若不计碰撞时间,粒子在圆筒内运动的总时间多大?
如图所示,相距的AB、CD两直线间的区域存在着两个大小不同、方向相反的有界匀强电场,其中PT上方的电场的场强方向竖直向下,PT下方的电场的场强方向竖直向上,在电场左边界AB上宽为的PQ区域内,连续分布着电量为、质量为的粒子。从某时刻起由Q到P点间的带电粒子,依次以相同的初速度沿水平方向垂直射入匀强电场中,若从Q点射入的粒子,通过PT上的某点R进入匀强电场后从CD边上的M点水平射出,其轨迹如图,若MT两点的距离为。不计粒子的重力及它们间的相互作用。试求:
(1)电场强度与;
(2)在PQ间还有许多水平射入电场的粒子通过电场后也能垂直CD边水平射出,这些入射点到P点的距离有什么规律?
(3)有一边长为、由光滑绝缘壁围成的正方形容器,在其边界正中央开有一小孔S,将其置于CD右侧,若从Q点射入的粒子经AB、CD间的电场从S孔水平射入容器中。欲使粒子在容器中与器壁多次垂直碰撞后仍能从S孔射出(粒子与绝缘壁碰撞时无能量和电量损失),并返回Q点,在容器中现加上一个如图所示的匀强磁场,粒子运动的半径小于,磁感应强度的大小还应满足什么条件?
汤姆生曾采用电场、磁场偏转法测定电子的比荷,具体方法如下:
Ⅰ.使电子以初速度v1垂直通过宽为L的匀强电场区域,测出偏向角θ,已知匀强电场的场强大小为E,方向如图(a)所示
Ⅱ.使电子以同样的速度v1垂直射入磁感应强度大小为B、方向如图(b)所示的匀强磁场,使它刚好经过路程长度为L的圆弧之后射出磁场,测出偏向角φ,请继续完成以下三个问题:
(1)电子通过匀强电场和匀强磁场的时间分别为多少?
(2)若结果不用v1表达,那么电子在匀强磁场中做圆弧运动对应的圆半径R为多少?
(3)若结果不用v1表达,那么电子的比荷e / m为多少?
在甲图中,带正电粒子从静止开始经过电势差为U的电场加速后,从G点垂直于MN进入偏转磁场。该偏转磁场是一个以直线MN为上边界、方向垂直于纸面向外的匀强磁场,磁场的磁感应强度为B,带电粒子经偏转磁场后,最终到达照相底片上的H点.测得G、H间的距离为d,粒子的重力可忽略不计。
(1)设粒子的电荷量为q,质量为m,试证明该粒子的比荷为:;
(2)若偏转磁场的区域为圆形,且与MN相切于G点,如图乙所示,其它条件不变。要保证上述粒子从G点垂直于MN进入偏转磁场后不能打到MN边界上(MN足够长),求磁场区域的半径应满足的条件。
()如图,在平面直角坐标系xOy内,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限以ON为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。一质量为m、电荷量为q的带正电的粒子,从y轴正半轴上y = h处的M点,以速度v0垂直于y轴射入电场,经x轴上x = 2h处的P点进入磁场,最后以垂直于y轴的方向射出磁场。不计粒子重力。求
(1)电场强度大小E;
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从进入电场到离开磁场经历的总时间t。