21.(19分)
图为“双聚焦分析器”质谱仪的结构示意图,其中,加速电场的电压为U,静电分析器中与圆心01等距离的各点场强大小相等、方向沿径向,磁分析器中以02为圆心、圆心角为90o的扇形区域内,分布着方向垂直于纸面的匀强磁场,其左边界与静电分析器的右端面平行。由离子源发出的一质量为m、电荷量为g的正离子(初速度为零,重力不计)经加速电场加速后,从M点垂直于电场方向进入静电分析器,沿半径为R的四分之一圆弧轨迹做匀速圆周运动,从N点射出,接着由P点垂直磁分析器的左边界射入,最后垂直于下边界从Q点射出并进入收集器。已知Q点与圆心02的距离为d。求:
(1)磁分析器中磁场的磁感应强度B的大小和方向;
(2)静电分析器中离子运动轨迹处电场强度E的大小;
(3)现将离子换成质量为0.9m、电荷量仍为g的另一种正离子,其它条件不变。试直接指出该离子进入磁分析器时的位置,它射出磁场的位置在Q点的左侧还是右侧?
如图所示,OACO为置于水平面内的光滑闭合金属导轨,O、C处分别接有短电阻丝(图中用粗线表示),R1=4Ω、R2=8Ω(导轨其它部分电阻不计)。导轨OAC的形状满足(单位:m)。磁感应强度B=0.2T的匀强磁场方向垂直于导轨平面。一足够长的金属棒在水平外力F作用下,以恒定的速率v=5.0m/s水平向右在导轨上从O点滑动到C点,棒与导轨接触良好且始终保持与OC导轨垂直,不计棒的电阻。求:(1)外力F的最大值;(2)金属棒在导轨上运动时电阻丝R1上消耗的最大功率;(3)在滑动过程中通过金属棒的电流I与时间t的关系。
如图所示,一带电粒子质量为m,电量为q(不计重力),以某一速度垂直射入磁感应强度B、宽度为d的有界匀强磁场中,穿过磁场时速度方向与原来入射方向的夹角为30°。求:
(1)带电粒子在匀强磁场中做圆周运动时的速度大小;
(2)带电粒子穿过磁场区域的时间为多少?
下图为汤姆生在1897年测量阴极射线(电子)的荷质比时所用实验装置的示意图。K为阴极,A1和A2为连接在一起的中心空透的阳极,电子从阴检发出后被电场加速,只有运动方向与A1和A2的狭缝方向相同的电子才能通过,电子被加速后沿方向垂直进入方向互相垂直的电场、磁场的叠加区域。磁场方向垂直纸面向里,电场极板水平放置,电子在电场力和磁场力的共同作用下发生偏转。已知圆形磁场的半径为R,圆心为C。
某校物理实验小组的同学们利用该装置,进行了以下探究测量:
首先他们调节两种场强的大小:当电场强度的大小为E,磁感应强度的大小为B时,使得电子恰好能够在复合场区域内沿直线运动;然后撤去电场,保持磁场和电子的速度不变,使电子只在磁场力的作用下发生偏转,打要荧屏上出现一个亮点P,通过推算得到电子的偏转角为α(即:之间的夹角)。若可以忽略电子在阴极K处的初速度,则:
(1)电子在复合场中沿直线向右飞行的速度为多大?
(2)电子的比荷为多大?
(3)利用上述已知条件,你还能再求出一个其它的量吗?若能,请指出这个量的名称。
如题24图所示,M、N为两块带等量异种电荷的平行金属板,板上有正对的小孔,N板右侧有两个宽度分别为d和2d的匀强磁场区域,磁感应强度大小分别为2B和B,方向分别垂直于纸面向里和向外.板左侧电子经小孔O1进入两板间,O2在磁场边界上,O1O2连线过板上正对的小孔且与磁场边界垂直,电子的质量为m,电荷量大小为e,电子重力和进入两板间初速度可以忽略.求:
(1)当两板间电势差为U0时,求从N板小孔射出的电子的速度v0;
(2)两金属板间电势差U在什么范围内,电子不能进入右侧磁场区域;
(3)如果电子从右边界的P点穿出,P与O2间距离为2d,求两金属板间电势差U大小。
如图所示,某空间有一竖直向下的匀强电场,电场强度E=1.0×102V/m,一块足够大的接地金属板水平放置在匀强电场中,在金属板的正上方高度h=0.80m的C处有一粒子源,可在纸面内向水平线以下的各个方向均匀放出带电粒子,带电粒子的初速度,质量为,电荷量为,粒子最终落在金属板上。若不计粒子重力,求:
(1)粒子源所在处C点的电势;
(2)带电粒子打在金属板上时的动能;
(3)若只将电场换为匀强磁场,磁场分布在半径为力,圆心在C点的圆形区域内,磁场方向垂直纸面向里,磁感应强度为B=0.5T,从粒子源射出的粒子打在金属板上的范围。(结果保留两位有效数字,)
在以坐标原点为中心、边长为L的正方形EFGH区域内,存在磁感应强度为B、方向垂直于纸面向里的匀强磁场,如图所示。在A处有一个粒子源,可以连续不断的沿-x方向射入速度不同的带电粒子,且都能从磁场的上边界射出。已知粒子的质量为m,电量大小为q,重力不计,不考虑粒子间的相互作用。
(1)试判断粒子的电性;
(2)求从F点射出的粒子在磁场中运动的时间;
(3)若粒子以速度射入磁场,求粒子由EF边射出时的位置坐标。
如图所示,x轴正方向水平向右,y轴正方向竖直向上。在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。发射时,这束带电微粒分布在0<y<2R的区间内。已知重力加速度大小为g。
(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小和方向。
(2)请指出这束带电微粒与x轴相交的区域,并说明理由。
(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由。
一质量为m、带电量为+q的粒子以速度v0从O点沿y轴正方向射入一圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为30°,同时进入场强大小为大小为E,方向沿x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方c点,如图所示,已知b到O的距离为L,粒子的重力不计,试求:
⑴磁感应强度B
⑵圆形匀强磁场区域的最小面积;
⑶c点到b点的距离
如图,是边长为的正方形。质量为、电荷量为的电子以大小为的初速度沿纸面垂直于边射入正方形区域。在正方形内适当区域中有匀强磁场。电子从边上的任意点入射,都只能从点射出磁场。不计重力,求:
(1)次匀强磁场区域中磁感应强度的方向和大小;
(2)此匀强磁场区域的最小面积。
如图所示,一带电微粒质量m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=30°,并接着进入一个方向垂直纸面向里、宽度D=34.6cm的匀强磁场区域。已知偏转电场中金属板长L=20cm,两板间距d=17.3cm,重力忽略不计。求:
(1)带电微粒进入偏转电场时的速率v1;
(2)偏转电场中两金属板间的电压U2;
(3)为使带电微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少为多大?
如图所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿轴负方向的匀强电场;第四象限无电场和磁场。现有一质量为、电荷量为的粒子以速度从轴上的点沿轴负方向进入电场,不计粒子的重力,粒子经轴上的点和点最后又回到点,设,,求:
(1)带电粒子的电性,电场强度的大小;
(2)带电粒子到达点时的速度大小和方向;
(3)匀强磁场的磁感应强度的大小和方向;
(4)粒子从点进入电场,经、点最后又回到点所用的时间?
如图所示,空间分布着有理想边界的匀强电场和匀强磁场,左侧匀强电场的场强大小为、方向水平向右,其宽度为;中间区域匀强磁场的磁感强度大小为、方向垂直纸面向外;右侧匀强磁场的磁感强度大小也为、方向垂直纸面向里.一个带正电的粒子(质量,电量,不计重力)从电场左边缘点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到了点,然后重复上述运动过程.求:
(1)中间磁场区域的宽度;
(2)带电粒子从点开始运动到第一次回到点时所用的时间?
如图所示,粒子源S可以不断地产生质量为、电荷量为的粒子(重力不计),粒子从孔漂进(初速不计)一个水平方向的加速电场,再经小孔进入相互正交的匀强电场和匀强磁场区域,电场强度大小为,磁感应强度大小为,方向如图.虚线PQ、MN之间存在着水平向右的匀强磁场,磁感应强度大小为(图中未画出).有一块折成直角的硬质塑料板abc(不带电,宽度很窄,厚度不计)放置在PQ、MN之间(截面图如图),、两点恰在分别位于PQ、MN上,,,现使粒子能沿图中虚线进入PQ、MN之间的区域,求:
(1)求加速电压;
(2)假设粒子与硬质塑料板相碰后,速度大小不变,方向变化遵守光的反射定律,粒子在PQ、MN之间的区域中运动的时间和路程分别是多少?
如图所示:在真空中,半径为的圆形区域内存在匀强磁场,磁场方向垂直纸面向里,在磁场右侧有一对平行金属板和,两板间距离为,板长为,板的中心线与磁场的圆心在同一直线上,有一电荷量为、质量为的带电的粒子,以速度从圆周上的点沿垂直于半径并指向圆心的方向进入磁场平面,当从圆周上的点水平飞出磁场时,给、板加上如下图所示电压,最后粒子刚好以平行于板的速度,从板的边缘飞出(不计粒子重力),求
(1)磁场的磁感应强度;
(2)求交变电压的周期和电压的值;
(3)若时,该粒子从、板右侧沿板的中心线仍以速率向左射入、之间,求粒子从磁场中射出的点到点的距离?