如图所示,在直角坐标系的第一、二象限内有垂直于纸面的匀强磁场,第三象限有沿轴负方向的匀强电场;第四象限无电场和磁场。现有一质量为、电荷量为的粒子以速度从轴上的点沿轴负方向进入电场,不计粒子的重力,粒子经轴上的点和点最后又回到点,设,,求:(1)带电粒子的电性,电场强度的大小;(2)带电粒子到达点时的速度大小和方向;(3)匀强磁场的磁感应强度的大小和方向;(4)粒子从点进入电场,经、点最后又回到点所用的时间?
有些人,像电梯修理员、牵引专家和赛艇运动员,常需要知道绳或金属线中的张力,可又不能到那些绳、线的自由端去测量.一家英国公司现在制造出一种夹在绳上的仪表,用一个杠杆使绳子的某点有一个微小偏移量,如图所示,仪表很容易测出垂直于绳的恢复力.推导一个能计算绳中张力的公式.如果偏移量为12 mm,恢复力为300 N,计算绳中张力.
如图所示,能承受最大拉力为10 N的细线OA与竖直方向成45°角,能承受最大拉力为5 N的细线OB水平,细线OC能承受足够的拉力,为使OA、OB均不被拉断,OC下端所悬挂物体的最大重力是多少?
一传送带装置如图所示,其中AB段是水平的,长度LAB=4 m,BC段是倾斜的,长度LBC=5 m,倾角为θ=37°,AB和BC由B点通过一段短的圆弧连接(图中未画出圆弧),传送带以v=4 m/s的恒定速率顺时针运转,已知工件与传送带间的动摩擦因数μ=0.5,重力加速度g取10 m/s2.现将一个工件(可看做质点)无初速度地放在A点,求:(1)工件第一次到达B点所用的时间;(2)工件沿传送带上升的最大高度;(3)工件运动了23 s后所在的位置.
一飞船在某星球表面附近,受星球引力作用而绕其做匀速圆周运动的速率为v1,飞船在离该星球表面高度为h处,受星球引力作用而绕其做匀速圆周运动的速率为v2,已知万有引力常量为G.试求:(1)该星球的质量;(2)若设该星球的质量为M,一个质量为m的物体在离该星球球心r远处具有的引力势能为Ep=-,则一颗质量为m1的卫星由r1轨道变为r2(r1<r2)轨道,对卫星至少做多少功?(卫星在r1、r2轨道上均做匀速圆周运动,结果请用M、m1、r1、r2、G表示)
山地滑雪是人们喜爱的一项运动,一滑雪道ABC的底部是一半径为R的圆,圆与雪道相切于C点,C点的切线水平,C点与水平雪地间距离为H,如图所示,D是圆的最高点,一运动员从A点由静止下滑,刚好能经过圆轨道最高点D旋转一周,再经C后被水平抛出,当抛出时间为t时,迎面水平刮来一股强风,最终运动员以速度v落到了雪地上,已知运动员连同滑雪装备的总质量为m,重力加速度为g,不计遭遇强风前的空气阻力和雪道及圆轨道的摩擦阻力,求:(1)A、C的高度差为多少时,运动员刚好能过D点?(2)运动员刚遭遇强风时的速度大小及距地面的高度;(3)强风对运动员所做的功.