电子自静止开始经M、N板间(两板间的电压为U)的电场加速后从A点垂直于磁场边界射入宽度为d有平行边界的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图所示.求匀强磁场的磁感应强度.(已知电子的质量为m,电荷量为e)、
如图甲所示,在一水平放置的隔板MN的上方,存在一磁感应强度大小为B的匀强磁场,磁场方向如图所示。O为隔板上的一个小孔,通过O点可以从不同方向向磁场区域发射电量为+q,质量为m,速率为的粒子,且所有入射的粒子都在垂直于磁场的同一平面内运动。不计重力及粒子间的相互作用。
(1)如图乙所示,与隔板成450角的粒子,经过多少时间后再次打到隔板上?此粒子打到隔板的位置与小孔的距离为多少?
(2)所有从O点射入的带电粒子在磁场中可能经过区域的面积为多少?
(18分)如图所示,质量为m,电荷量为e的电子从坐标原点O处沿xOy平面射入第一象限内,射入时的速度方向不同,但大小均为v0.现在某一区域内加一方向向外且垂直于xOy平面的匀强磁场,磁感应强度大小为B,若这些电子穿过磁场后都能垂直地射到与y轴平行的荧光屏MN上,求:
(1)电子从y轴穿过的范围;
(2)荧光屏上光斑的长度;
(3)所加磁场范围的最小面积.
如图,一半径为的圆表示一柱形区域的横截面(纸面)。在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为、电荷量为的粒子沿图中直线在圆上的点射入柱形区域,在圆上的点离开该区域,离开时速度方向与直线垂直。圆心到直线的距离为。现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在点射入柱形区域,也在点离开该区域。若磁感应强度大小为,不计重力,求电场强度的大小。
如图所示,相距为d的狭缝P、Q间存在着方向始终与P、Q平面垂直、电场强度大小为E的匀强电场,且电场的方向按一定规律分时段变化。狭缝两侧均有磁感强度大小为B、方向垂直纸面向里的匀强磁场,且磁场区域足够大。某时刻从P平面处由静止释放一个质量为m、带电荷为q的带负电粒子(不计重力),粒子被加速后由A点进入Q平面右侧磁场区,以半径r1做圆运动,此时电场的方向已经反向,当粒子由A1点自右向左通过Q平面后,使粒子再次被加速进入P平面左侧磁场区做圆运动,此时电场又已经反向,粒子经半个圆周后通过P平面进入PQ狭缝又被加速,……。以后粒子每次通过PQ间都被加速。设粒子自右向左穿过Q平面的位置分别是A1、A2、A3、……An……,求:(1)粒子第一次在Q右侧磁场区做圆运动的半径r1的大小。(2)粒子第一次和第二次通过Q平面的位置A1和A2之间的距离。(3)设An与An+1间的距离小于r1/3,则n值为多大。
如图所示,在地面附近,坐标系xoy在竖直平面内,空间有沿水平方向垂直于纸面向里的匀强磁场,磁感应强度为B,在x<0的区域内还有沿X轴负向的匀强电场,场强大小为E。一个带正电油滴经图中x轴上的M点,沿着与水平方向成α=300角斜向下做直线运动,进入x>0的区域。要使油滴进入x>0的区域后能在竖直平面内做匀速圆周运动。需在x>0的区域内加一个匀强电场,若带电油滴做圆周运动通过x轴上的N点,且MO=NO。
求:
①油滴的运动速度的大小?
②在x>0的区域内所加的电场强度的大小和方向?
③油滴从x轴上的M点到达x轴上的N点所用的时间?
如图所示,在第二象限的正方形区域Ⅰ内分别存在着垂直纸面向里的匀强磁场;在第四象限区域Ⅱ存在着垂直纸面向外的无限大的匀强磁场,两磁场的磁感应强度均为B,方向相反。一质量为m、电量为e电子由P(-d,d)点,沿x轴正方向射入磁场区域Ⅰ。
(1)求电子能从第三象限射出的入射速度的范围;
(2)若电子从(0,d/2)位置射出,求电子离开磁场Ⅱ时的位置与坐标原点O的距离。
如下图所示,带电平行金属板PQ和MN之间距离为d;两金属板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B。建立如图所示的坐标系,x轴平行于金属板,且与金属板中心线重合,y轴垂直于金属板。区域I的左边界是y轴,右边界与区域II的左边界重合,且与y轴平行;区域II的左、右边界平行。在区域I和区域II内分别存在匀强磁场,磁感应强度大小均为B,区域I内的磁场垂直于Oxy平面向外,区域II内的磁场垂直于Oxy平面向里。一电子沿着x轴正向以速度v0射入平行板之间,在平行板间恰好沿着x轴正向做直线运动,并先后通过区域I和II。已知电子电量为e,质量为m,区域I和区域II沿x轴方向宽度均为。不计电子重力。
(1)求两金属板之间电势差U;
(2)求电子从区域II右边界射出时,射出点的纵坐标y;
(3)撤除区域I中的磁场而在其中加上沿x轴正向匀强电场,使得该电子刚好不能从区域II的右边界飞出。求电子两次经过y轴的时间间隔t。
如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸里,磁感应强度为B。一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ=300。(粒子所受重力不计)求:
(1)该粒子射出磁场时的位置;
(2)该粒子在磁场中运动的时间。
如图所示,一长为l、质量为M的绝缘板静止在光滑水平面上,板的中点有一个质量为m的小物块,它带有电荷量为q的正电荷。在绝缘板右侧有一磁感应强度为B,方向垂直于纸面向里的匀强磁场,磁场的宽度也为l。在水平恒力F的作用下绝缘板与物块一起向右运动。物块进入磁场前与绝缘板相对静止,进入后与绝缘板产生相对滑动,当物块运动到磁场的右边界时,恰好位于绝缘板的左端,此时物块与板间的摩擦力刚好减为零,已知物块经过磁场所用的时间为t。求
(1)物块进入磁场左边界时的速度大小
(2)物块到达磁场右边界时的速度大小
(3)绝缘板完全穿出磁场时的速度大小
直线MN上方有磁感应强度为B的匀强磁场,方向如图所示,一个电子质量为m,电荷为e,从O点以与MN成30°角的速度v射入磁场,求该电子从磁场中射出时距O点多远?在磁场中运动的时间是多少?
如图所示,l1和l2为距离d=0.lm的两平行的虚线,l1上方和l2下方都是垂直纸面向里的磁感应强度均为B=0.20T的匀强磁场,A、B两点都在l2上.质量m=1.67×10-27kg、电量q=1.60×10-19C的质子,从A点以v0=5.0×105m/s的速度与l2成θ=45°角斜向上射出,经过上方和下方的磁场偏转后正好经过B点,经过B点时速度方向也斜向上.求(结果保留两位有效数字):
质子在磁场中做圆周运动的半径;
A、B两点间的最短距离;
质子由A运动到B的最短时间.
如图所示,在平面直角坐标系的第一象限内存在匀强电场,场强沿y轴的负向;在y<0的空间中,存在磁感应强度为B的匀强磁场,磁场方向垂直xy平面(纸面)向外.一带电量为q、质量为m的带正电粒子,从y轴的P1点以的速度垂直y轴射人第一象限内,经过电场后从x轴上x=2h的P2点以角射入x轴下方的匀强磁场.(重力不计)
求电场强度的大小;
带电粒子通过y轴下方的磁场偏转之后,打在x轴负向P3点并由该点射人第二象限内.如果当粒子进入第二象限的同时,在第二象限内加一方向与带电粒子速度方向相反的匀强电场,使得带电粒子在到达y轴之前速度减为0,然后又返回磁场中.
①在坐标系上大致画出带电粒子在第四次经过x轴以前的运动轨迹.
②求出带电粒子第四次经过x轴时的坐标及之前在磁场中运动的总时间.
如图所示,在边长为a的正方形ABCD的对角线AC左右两侧,分别存在垂直纸面向内磁感应强度为B的匀强磁场和水平向左电场强度大小为E的匀强电场, AD、CD是两块固定荧光屏(能吸收打到屏上的粒子)。现有一群质量为m、电量为q的带正电粒子,从A点沿AB方向以不同速率连续不断地射入匀强磁场中,带电粒子速率范围为 。已知,不计带电粒子的重力和粒子之间的相互作用。求:
(1)恰能打到荧光屏C D上的带电粒子的入射速度;
(2)AD、CD两块荧光屏上形成亮线的长度。