如图所示,在空间中存在垂直纸面向里的场强为B匀强磁场,其边界AB、CD的宽度为d,在左边界的Q点处有一质量为m,带电量为负q的粒子沿与左边界成30o的方向射入磁场,粒子重力不计.
求:
(1)带电粒子能从AB边界飞出的最大速度?
(2)若带电粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示的匀强电场中减速至零且不碰到负极板,则极板间电压及整个过程中粒子在磁场中运动的时间?
(3)若带电粒子的速度是(2)中的倍,并可以从Q点沿纸面各个方向射入磁场,则粒子能打到CD边界的范围?
如图所示,在一底边长为2L,θ=45°的等腰三角形区域内(O为底边中点)有垂直纸面向外的匀强磁场. 现有一质量为m,电量为q的带正电粒子从静止开始经过电势差为U的电场加速后,从O点垂直于AB进入磁场,不计重力与空气阻力的影响。
(1)粒子经电场加速射入磁场时的速度?
(2)磁感应强度B为多少时,粒子能以最大的圆周半径偏转后打到OA板?
如图甲所示,在光滑绝缘的水平桌面上平放着相互平行、间距为0.1m的金属板、,板间存在匀强电场,方向水平向右. 在板右侧平面内存在如图乙所示的交替变化的电磁场. 以板小孔处为坐标原点,建立坐标系,且规定沿方向为电场的正方向,竖直向下为磁场的正方向. 在点一质量为10g、电荷量为0.1C的带正电的金属小球由静止释放,设时刻金属小球恰好以m/s的速度经小孔进入板右侧. 已知N/C、=0.2T. 求:
(1)、两板间的电场强度的大小;
(2)在1s~2s内,金属小球在磁场中做圆周运动的半径和周期;
(3) 前6s内金属小球运动至离轴的最远点的位置坐标.(计算结果可以含)
如图所示,xOy为空间直角坐标系,PQ与y轴正方向成θ=30°角。在第四象限和第一象限的xoQ区域存在磁感应强度为B的匀强磁场,在poy区域存在足够大的匀强电场,电场方向与PQ平行,一个带电荷量为+q,质量为m的带电粒子从-y轴上的A(0,-L)点,平行于x轴方向射入匀强磁场,离开磁场时速度方向恰与PQ垂直,粒子在匀强电场中经时间t后再次经过x轴,粒子重力忽略不计。求:(1)从粒子开始进入磁场到刚进入电场的时间t';
(2)匀强电场的电场强度E的大小。
如图所示的狭长区域内有垂直于纸面向里的匀强磁场,区域的左、右两边界均沿竖直方向,磁场磁感应强度的大小为B.某种质量为m,电荷量q的带正电粒子从左边界上的P点以水平向右的初速度v进入磁场区域,该粒子的运动轨迹恰好与磁场右边界相切。重力的影响忽略不计。
(1)求该粒子在磁场中做圆周运动的轨道半径和周期;
(2)求磁场左、右两边界之间的距离L;
如图所示,矩形区域Ⅰ和Ⅱ内分别存在方向垂直于纸面向外和向里的匀强磁场(AA′、BB′、CC′、DD′为磁场边界,四者相互平行),磁感应强度大小均为B,矩形区域的长度足够长,两磁场宽度及BB′与CC′之间的距离均相同。某种带正电的粒子从AA′上的O1处以大小不同的速度沿与O1A成α=30°角进入磁场(如图所示,不计粒子所受重力),当粒子的速度小于某一值时,粒子在区域Ⅰ内的运动时间均为t0;当速度为v0时,粒子在区域Ⅰ内的运动时间为。求:
⑴粒子的比荷;
⑵磁场区域Ⅰ和Ⅱ的宽度d;
⑶速度为v0的粒子从O1到DD′所用的时间。
如图所示真空中在直线DC与EF间宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电+q的粒子以与DC成θ角的速度v0垂直射入磁场中。
求(1)要使粒子只能从DC射出,则初速度v0应满足什么条件?
(2)从DC边飞出的粒子飞行的时间是多少?
如图所示,在xoy坐标系第一象限内有匀强磁场,磁场区域上边界刚好与直线y=a重合,磁感应强度为B。一个带正电的离子在坐标为(a,0)的A点以某一速度进入磁场区域,进入磁场时速度方向与x轴正向夹角为30°,离子质量为m,带电量为q。不计离子重力。
(1)若离子离开磁场时位置坐标为(a,a)的C点,求离子运动的速度大小
(2)当离子进入磁场的速度满足什么条件时可使离子在磁场区域运动的时间最长?并求出最长时间是多少?
如图所示宽度为d的区域上方存在垂直纸面、方向向内、磁感应强度大小均为B的匀强磁场,现有一质量为m,带电量为+q的粒子在纸面内以速度v从此区域下边缘上的A点射入,其方向与下边缘线成30°角,试求当v满足什么条件时,粒子能回到A。
如图所示,在xOy坐标系中,x轴上N点到O点的距离是12cm,虚线NP与x轴负向的夹角是30°.第Ⅰ象限内NP的上方有匀强磁场,磁感应强度B=1T,第IV象限有匀强电场,方向沿y轴正向.一质量m=8×10-10kg.电荷量q=1×10-4C带正电粒子,从电场中M(12,-8)点由静止释放,经电场加速后从N点进入磁场,又从y轴上P点穿出磁场.不计粒子重力,取=3
求:
(1)粒子在磁场中运动的速度v;
(2)粒子在磁场中运动的时间t;
(3)匀强电场的电场强度E.
如图所示,直线MN的下方有竖直向下的匀强电场,场强大小为E=700V/m。在电场区域内有一个平行于MN的挡板PQ;MN的上方有一个半径为R=m的圆形弹性围栏,在围栏区域内有图示方向的匀强磁场,磁感应强度大小为B=16.3T。围栏最低点一个小洞b,在b点正下方的电场区域内有一点a,a点到MN的距离d1=45cm,到PQ距离d2=5cm。现将一个质量为m="0.1g" ,带电量q=2×10-3C的带正电小球(重力不计),从a点由静止释放,在电场力作用下向下运动与挡板PQ相碰后电量减少到碰前的0.8倍,且碰撞前后瞬间小球的动能不变,不计空气阻力以及小球与围栏碰撞时的能量损失,试求:(已知,)
(1)小球第一次与挡板PQ相碰后向上运动的距离;
(2)小球第一次从小洞b进入围栏时的速度大小;
(3)小球从第一次进入围栏到离开围栏经历的时间。
如图所示,在直角坐标系xOy内,有一质量为m,电荷量为+q的粒子A从原点O沿y 轴正方向以初速度V0射出,粒子重力忽略不计,现要求该粒子能通过点P(a, -b),可通 过在粒子运动的空间范围内加适当的“场”来实现。
(1) 若只在整个I、II象限内加垂直纸面向外的匀强磁场,使粒子A在磁场中作匀速 圆周运动,并能到达P点,求磁感应强度B的大小;
(2) 若只在x轴上某点固定一带负电的点电荷 Q,使粒子A在Q产生的电场中作匀速圆周运动,并能到达P点,求点电荷Q的电量大小;
(3) 若在整个I、II象限内加垂直纸面向外的 匀强磁场,并在第IV象限内加平行于x轴,沿x轴 正方向的匀强电场,也能使粒子A运动到达P点。如果此过程中粒子A在电、磁场中运动的时间相等,求磁感应强度B的大小和电场强度E的大小
如图甲所示,在两平行金属板的中线OO′某处放置一个粒子源,粒子沿OO1方向连续不断地放出速度的带正电的粒子。在直线MN的右侧分布有范围足够大的匀强磁场,磁感应强度B=0.01T,方向垂直纸面向里,MN与中线OO′垂直。两平行金属板间的电压U随时间变化的U—t图线如图乙所示。已知带电粒子的荷质比,粒子的重力和粒子之间的作用力均可忽略不计,若时刻粒子源放出的粒子恰能从平行金属板边缘离开电场(设在每个粒子通过电场区域的时间内,可以把板间的电场看作是恒定的)。求:
(1)时刻粒子源放出的粒子离开电场时的速度大小和方向。
(2)从粒子源放出的粒子在磁场中运动的最短时间和最长时间。
在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响)。
⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。
⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图)。求入射粒子的速度。
如图所示,相距为R的两块平行金属板M、N正对着放置,S1、S2分别为M、N板上的小孔,S1、S2、O三点共线,它们的连线垂直M、N,且S2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子经S1进入M、N间的电场后,通过S2进入磁场.粒子在S1处的速度以及粒子所受的重力均不计.
(1)当M、N间的电压为U时,求粒子进入磁场时速度的大小v;
(2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0;
(3)当M、N间的电压不同时,粒子从S1到打在D上经历的时间t会不同,求t的最小值.