如图所示,xOy为空间直角坐标系,PQ与y轴正方向成θ=30°角。在第四象限和第一象限的xoQ区域存在磁感应强度为B的匀强磁场,在poy区域存在足够大的匀强电场,电场方向与PQ平行,一个带电荷量为+q,质量为m的带电粒子从-y轴上的A(0,-L)点,平行于x轴方向射入匀强磁场,离开磁场时速度方向恰与PQ垂直,粒子在匀强电场中经时间t后再次经过x轴,粒子重力忽略不计。求:(1)从粒子开始进入磁场到刚进入电场的时间t';(2)匀强电场的电场强度E的大小。
如图所示的电路中,已知E=20 V,R1=20 Ω,R2=10 Ω,L是纯电感线圈,电源内阻不计,则S闭合,电路稳定后断开S的瞬间,L两端的电压是多少?哪端电势高?
如图所示,半径为a的圆形区域(图中虚线)内有匀强磁场,磁感应强度为B=0.2 T,半径为b的金属圆环与虚线圆同心、共面的放置,磁场与环面垂直,其中a=0.4 m、b=0.6 m;金属环上分别接有灯L1、L2,两灯的电阻均为2 Ω.一金属棒MN与金属环接触良好,棒与环的电阻均不计. (1)若棒以v0=5 m/s的速率沿环面向右匀速滑动,求棒滑过圆环直径OO′的瞬间,MN中的电动势和流过灯L1的电流. (2)撤去中间的金属棒MN,将左面的半圆弧OL1O′以MN为轴翻转90°,若此后B随时间均匀变化,其变化率为=T/s,求灯L2的功率.
磁悬浮列车的运行原理可简化为如图所示的模型,在水平面上,两根平行直导轨间有竖直方向且等距离分布的匀强磁场B1和B2,导轨上有金属框abcd,金属框宽度ab与磁场B1、B2宽度相同.当匀强磁场B1和B2同时以速度v0沿直导轨向右做匀速运动时,金属框也会沿直导轨运动,设直导轨间距为L,B1=B2=B,金属框的电阻为R,金属框运动时受到的阻力恒为F,则金属框运动的最大速度为多少?
如图所示,足够长的两根相距为0.5 m的平行光滑导轨竖直放置,导轨电阻不计,磁感应强度B为0.8 T的匀强磁场的方向垂直于导轨平面.两根质量均为0.04 kg的可动金属棒ab和cd都与导轨接触良好,金属棒ab和cd的电阻分别为1 Ω和0.5 Ω,导轨最下端连接阻值为1 Ω的电阻R,金属棒ab用一根细绳拉住,细绳允许承受的最大拉力为0.64 N.现让cd棒从静止开始落下,直至细绳刚被拉断,此过程中电阻R上产生的热量为0.2 J(g取10 m/s2).求: (1)此过程中ab棒和cd棒产生的热量Qab和Qcd; (2)细绳被拉断瞬间,cd棒的速度v; (3)细绳刚要被拉断时,cd棒下落的高度h.
如图所示,两根平行金属导轨固定在水平桌面上,每根导轨每米的电阻为r0=0.10 Ω/m,导轨的端点P、Q用电阻可忽略的导线相连,两导轨间的距离l=0.20 m.有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B与时间t的关系为B=kt,比例系数k=0.020 T/s.一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直,在t=0时刻,金属杆紧靠在P、Q端,在外力作用下,杆以恒定的加速度从静止开始向导轨的另一端滑动,求在t=6.0 s时金属杆所受的安培力.