如图所示,MN、PQ是相互交叉成60°角的光滑金属导轨,O是它们的交点且接触良好.两导轨处在同一水平面内,并置于有理想边界的匀强磁场中(图中经过O点的虚线即为磁场的左边界).导体棒ab与导轨始终保持良好接触,并在弹簧S的作用下沿导轨以速度v0向左匀速运动.已知在导体棒运动的过程中,弹簧始终处于弹性限度内.磁感应强度的大小为B,方向如图.当导体棒运动到O点时,弹簧恰好处于原长,导轨和导体棒单位长度的电阻均为r,导体棒ab的质量为m.求:
(1)导体棒ab第一次经过O点前,通过它的电流大小;
(2)弹簧的劲度系数k;
(3)从导体棒第一次经过O点开始直到它静止的过程中,导体棒ab中产生的热量.
(16分)如图所示,固定于水平桌面上足够长的两光滑平行导轨PQ、MN,导轨的电阻不计,间距为d = 0.5m,P、M两端接有一只理想电压表,整个装置处于竖直向下的磁感应强度B = 0.2T的匀强磁场中.电阻均为r = 0.1Ω、质量分别为m1 = 0.3kg和m2 = 0.5kg的两金属棒ab、cd平行的搁在导轨上,现固定棒ab,让cd在水平恒力F = 0.8N的作用下,由静止开始做加速运动,试求:
(1)cd棒两端哪端电势高;
(2)当电压表的读数为U = 0.2V时,cd棒受到的安培力多大;
(3)棒cd能达到的最大速度vm.
如图所示,在MN边界的右侧有垂直纸面的匀强磁场,磁感应强度B随时间均匀增加,B随时间的变化率△B/△t=40T/s,有一正方形金属框abcd垂直磁场固定放置,一半位于磁场中,正方形金属框每一条边的边长L为10cm,每边的电阻R为1Ω,已知ab边中的感应电流方向由a向b,求:
(1)B的方向;
(2)金属框中的电流为多大
(3)db两端的电压Udb多大
(共16分)如图所示,MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40m,电阻不计. 导轨所在平面与磁感庆强度B=5.0T的匀强磁场垂直。质量m=6.0×10-2kg、电阻r=0.5Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有阻值均为3.0Ω的电阻R1和R2。重力加速度取10m/s2,且导轨足够长,若使金属杆ab从静止开始下滑,求:
(1)杆下滑的最大速率vm;
(2)稳定后整个电路耗电的总功率P;
(3)杆下滑速度稳定之后电阻R2两端的电压U.
如图所示,一矩形金属框架与水平面成=37°角,宽L =0.4m,上、下两端各有一个电阻R0 =2Ω,框架的其他部分电阻不计,框架足够长,垂直于金属框平面的方向有一向上的匀强磁场,磁感应强度B=1.0T.ab为金属杆,与框架良好接触,其质量m=0.1Kg,杆电阻r=1.0Ω,杆与框架的动摩擦因数μ=0.5.杆由静止开始下滑,在速度达到最大的过程中,上端电阻R0产生的热量Q0="0." 5J.(sin37°=0.6,cos37°=0.8)求:
(1)流过R0的最大电流;
(2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;
(3)在时间1s内通过杆ab横截面积的最大电量.
如图甲所示,放置在水平桌面上的两条光滑导轨间的距离L=1m,质量m=1kg的光滑导体棒放在导轨上,导轨左端与阻值R=4Ω的电阻相连,导轨所在位置有磁感应强度为B=2T的匀强磁场,磁场的方向垂直导轨平面向下,现在给导体棒施加一个水平向右的恒定拉力F,并每隔0.2s测量一次导体棒的速度,乙图是根据所测数据描绘出导体棒的v-t图像,不计其它电阻.(设导轨足够长)求:
(1)力F的大小.
(2)t=1.6s时,导体棒的加速度.
(3)若1.6s内导体棒的位移X=8m,试计算1.6s内电阻上产生的热量.
如图22所示,M、N是水平放置的很长的平行金属板,两板间有垂直于纸面沿水平方向的匀强磁场,其磁感应强度大小为B=0.25T,两板间距d=0.4m,在M、N板间右侧部分有两根无阻导线P、Q与阻值为0.3的电阻相连。已知MP和QN间距离相等且等于PQ间距离的一半,一根总电阻为r=0.2均匀金属棒ab在右侧部分紧贴M、N和P、Q无摩擦滑动,忽略一切接触电阻。现有重力不计的带正电荷q=1.6×10-9C的轻质小球以v0=7m/s的水平初速度射入两板间恰好能做匀速直线运动,则:
(1)M、N间的电势差应为多少?
(2)若ab棒匀速运动,则其运动速度大小等于多少?方向如何?
(3)维持棒匀速运动的外力为多大?
18.如图18(a)所示,一个电阻值为R,匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1,在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图18(b)所示,图线与横、纵轴的截距分别为t0和B0导线的电阻不计,求0至t1时间内
(1)通过电阻R1上的电流大小和方向;
(2)通过电阻R1上的电量q及电阻R1上产生的热量.
如图甲所示,一边长L=2.5m、质量m=0.5kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=0.8T的匀强磁场中,它的一边与磁场的边界MN重合。在水平力F作用下由静止开始向左运动,经过5s线框被拉出磁场。测得金属线框中的电流随时间变化的图像如乙图所示,在金属线框被拉出的过程中。
⑴求通过线框导线截面的电量及线框的电阻;
⑵写出水平力F随时间变化的表达式;
⑶已知在这5s内力F做功1.92J,那么在此过程中,线框产生的焦耳热是多少?
如图,A、B是两个截面积相同的气缸,放在水平地面上,活塞可无摩擦地上下移动。活塞上固定一细的刚性推杆,顶在一可绕水平固定轴O自由旋转的杠杆MN上,接触点是光滑的。活塞(连推杆)、杠杆的质量均不计,开始时A和B中的气体压强为和,体积均为V0=1.00L,温度均为T0=300K,杠杆处于水平位置,设大气压强始终为,当气缸B中气体的温度变为400K、体积VB=1.10L时,求气缸A中气体的温度?
如图 11-20所示光滑平行金属轨道abcd,轨道的水平部分bcd处于竖直向上的匀强磁场中,bc部分平行导轨宽度是cd部分的2倍,轨道足够长。将质量相同的金属棒P和Q分别置于轨道的ab段和cd段。P棒位于距水平轨道高为h的地方,放开P棒,使其自由下滑,求P棒和Q棒的最终速度。
磁悬浮列车动力原理如下图所示,在水平地面上放有两根平行直导轨,轨间存在着等距离的正方形匀强磁场Bl和B2,方向相反,B1=B2=lT,如下图所示。导轨上放有金属框abcd,金属框电阻R=2Ω,导轨间距L=0.4m,当磁场Bl、B2同时以v=5m/s的速度向右匀速运动时,求
如果导轨和金属框均很光滑,金属框对地是否运动?运动性质如何?
如果金属框运动中所受到的阻力恒为其对地速度的K倍,K=0.18,求金属框所能达到的最大速度vm是多少?
如果金属框要维持(2)中最大速度运动,它每秒钟要消耗多少磁场能?
如图所示,竖直平面内有一半径为、电阻为、粗细均匀的光滑半圆形金属环,在、处与相距为、电阻不计的平行光滑金属轨道、相接,之间接有电阻,已知=12,=4。 在MN上方及下方有水平方向的匀强磁场和,磁感应强度大小均为。现有质量为、电阻不计的导体棒,从半圆环的最高点处由静止下落,在下落 过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,设平行轨道足够长。已知导体棒下落/2时的速度大小为,下落到处的速度大小为。
(1)求导体棒从下落/2时的加速度大小。
(2)若导体棒进入磁场Ⅱ后棒中电流大小始终不变,求磁场I和Ⅱ之间的距离和上的电功率。
(3)若将磁场Ⅱ的边界略微下移,导体棒刚进入磁场Ⅱ时速度大小为,要使其在外力作用下做匀加速直线运动,加速度大小为,求所加外力随时间变化的关系式。
匀强磁场磁感应强度B=0.2T,磁场宽度L=3m,一个正方形铝金属框边长ab为l=1m,每边电阻均为r=0.2Ω,铝金属框以v =10m/s的速度匀速穿过磁场区域,其平面始终保持与磁感线方向垂直,如图所示,求:
(1)画出铝金属框穿过磁场区域的过程中,金属框内感应电流的I-t图象(取顺时针电流为正)以及cd两端点的电压 Ucd-t图象。
(2)求此过程线框中产生的焦耳热。
洛伦兹力演示仪是由励磁线圈(也叫亥姆霍兹线圈)、洛伦兹力管和电源控制部分组成的。励磁线圈是一对彼此平行的共轴串联的圆形线圈,它能够在两线圈之间产生匀强磁场。洛伦兹力管的圆球形玻璃泡内有电子枪,能够连续发射出电子,电子在玻璃泡内运动时,可以显示出电子运动的径迹。其结构如图所示。
(1)给励磁线圈通电,电子枪垂直磁场方向向左发射电子,恰好形成如“结构示意图”所示的圆形径迹,则励磁线圈中的电流方向是顺时针方向还是逆时针方向?
(2)两个励磁线圈中每一线圈为N = 140匝,半径为R =" 140" mm,两线圈内的电流方向一致,大小相同为I = 1.00A,线圈之间距离正好等于圆形线圈的半径,在玻璃泡的区域内产生的磁场为匀强磁场,其磁感应强度(特斯拉)。灯丝发出的电子经过加速电压为U=125V的电场加速后,垂直磁场方向进入匀强磁场区域,通过标尺测得圆形径迹的直径为D = 80.0mm,请估算电子的比荷。(答案保留2位有效数字)
(3)为了使电子流的圆形径迹的半径增大,可以采取哪些办法?