如图所示,在光滑绝缘的水平面上,放置两块直径为2L的同心半圆形金属板A、B,两板间的距离很近,半圆形金属板A、B的左边有水平向右的匀强电场E1,半圆形金属板A、B之间存在电场,两板间的电场强度E2可认为大小处处相等,方向都指向O,现从正对A、B板间隙、到两板的一端距离为d处静止释放一个质量为m、电荷量为q的带正电微粒(不计重力),此微粒恰能在两板间运动且不与板发生相互作用.
(1)求半圆形金属板A、B之间电场强度的E2的大小?
(2)从释放微粒开始,经过多长时间微粒的水平位移最大?
在竖直平面内有一固定的光滑绝缘轨道,由倾斜直轨道AB、水平直轨道BC及圆弧轨道CDH组成,圆弧部分圆心为O,半径为R,图中所示角度均为θ = 37°,其余尺寸及位置关系如图所示,轨道各部分间平滑连接.整个空间有水平向左的匀强电场,场强E = 3mg/4q,质量为m、带电量为 -q的小球从A处无初速度地进入AB轨道.已知重力加速度为g,sin37° = 0.6,cos 37° = 0.8,不计空气阻力.求
(1)小球经过D点时对轨道的压力;
(2)小球从H点离开轨道后经多长时间再次回到轨道.
如图所示,竖直放置的半圆形光滑绝缘轨道半径为R,圆心为O,下端与绝缘水平轨道在B点平滑连接.一质量为m、带电量为+q的物块(可视为质点),置于水平轨道上的A点.已知A、B两点间的距离为L,物块与水平轨道间的动摩擦因数为μ,重力加速度为g.
(1)若物块能到达的最高点是半圆形轨道上与圆心O等高的C点,则物块在A点水平向左运动的初速度应为多大?
(2)若整个装置处于方向竖直向上的匀强电场中,物块在A点水平向左运动的初速度vA=,沿轨道恰好能运动到最高点D,向右飞出.则匀强电场的场强为多大?
(3)若整个装置处于水平向左的匀强电场中,场强的大小E=.现将物块从A点由静止释放,运动过程中始终不脱离轨道,求物块第2n(n=1、2、3…)次经过B点时的速度大小.
(18分)如图所示,半径R=1m的四分之一光滑圆轨道最低点D的切线沿水平方向,水平地面上紧靠轨道依次排放两块完全相同的木板A、B,长度均为L=2m,质量均为m2=1kg,木板上表面与轨道末端相切.质量m1=lkg的小物块(可视作质点)自圆轨道末端C点的正上方H=0.8m高处的A点由静止释放,恰好从C点切入圆轨道。物块与木板间的动摩擦因数为,木板与水平地面间的动摩擦因数=0.2,重力加速度为g=l0m/s,最大静摩擦力与滑动摩擦力相等。
(1)求物块到达圆轨道最低点D时所受轨道的支持力多大。
(2)若物块滑上木板A时,木板不动,而滑上木板B时,木板B开始滑动,求应满足的条件。
(3)若地面光滑,物块滑上木板后,木板A、 B最终共同运动,求应满足的条件。
(19分)如图所示,带正电的绝缘小滑块A,被长R=0.4m的绝缘细绳竖直悬挂,悬点O距水平地面的高度为3R;小滑块B不带电.位于O点正下方的地面上。长L=2R的绝缘水平传送带上表面距地面的高度h=2R,其左端与O点在同一竖直线上,右端的右侧空间有方向竖直向下的匀强电场。在O点与传送带之间有位置可调的固定钉子(图中未画出),当把A拉到水平位置由静止释放后,因钉子阻挡,细绳总会断裂,使得A能滑上传送带继续运动,若传送带逆时针匀速转动,A刚好能运动到传送带的右端。已知绝缘细绳能承受的最大拉力是A重力的5倍,A所受电场力大小与重力相等,重力加速度g=10m/s2,A.B均可视为质点,皮带传动轮半径很小,A不会因绳断裂而损失能量、也不会因摩擦而损失电荷量。试求:
(1)钉子距O点的距离的范围。
(2)若传送带以速度v0=5m/s顺时针匀速转动,在A刚滑到传送带上时,B从静止开始向右做匀加速直线运动,当A刚落地时,B恰与A相碰。试求B做匀加速运动的加速度大小(结果可用根式表示)
(18分)图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB是一长为2R的竖直细管,上半部BC是半径为R的四分之一圆弧弯管,管口沿水平方向,AB管内有一原长为R、下端固定的轻质弹簧。投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上端放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去。如果质量为m的鱼饵到达管口C时,对上侧管壁的弹力恰好为mg。不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能。已知重力加速度为g、求:
(1)质量为m的鱼饵到达管口C时的速度大小VC;
(2)弹簧压缩到0.5R时的弹性势能Ep;
(3)已知地面与水面相距1.5R,若使该投饵管绕AB管的中轴线00′在360°角的范围内缓慢转动,每次弹射时只放置一粒鱼饵,鱼饵的质量在m到m之间变化,且均能落到水面。持续投放足够长时间后,鱼饵能够落到水面的最大面积S是多少?
如图所示,半径R=0.4m的四分之一粗糙圆轨道MN竖直固定放置,末端N与一长L=0.8m的水平传送带相切,水平衔接部分摩擦不计,传动轮(轮半径很小)做顺时针转动,带动传送带以恒定的速度v0运动。传送带离地面的高度h=1.25m,其右侧地面上有一直径D=0.5m的圆形洞,洞口最左端的A点离传送带右端的水平距离x=1m,B点在洞口的最右端,现使质量为m=0.5kg的小物块从M点由静止开始释放,滑到N点时速度为2m/s,经过传送带后做平抛运动,最终落入洞中,传送带与小物块之间的动摩擦因数μ=0.5,g取10m/s2,求:
(1)小物块到达圆轨道末端N时对轨道的压力;
(2)若v0=3 m/s,求小物块在传送带上运动的时间;
(3)若要使小物块能落入洞中,求v0应满足的条件。
(12分)如图所示,在平面直角坐标系中,第II象限和第I象限内各有一相同的圆形区域,两个区域的圆心坐标分别是(图中未标出),图中M、N为两个圆形区域分别与x轴的切点,其中第Ⅱ象限内的圆形区域也与y轴相切;两个区域中都分布着垂直纸面向里的匀强磁场,磁感应强度分别为;在第I象限内还存在着一沿x轴负方向,左右均有理想边界的匀强电场,左边界为y轴,右边界与磁场B2边界相切,电场强度;在第Ⅳ象限内有一沿x轴正方向的匀强电场E2,电场强度;一带负电的粒子(不计重力)从M点射入磁场Bl中,速度大小为,无论速度的方向如何(如图),粒子都能够在电场E1中做直线运动后进入磁场B2中,且都从N点飞出磁场进入第Ⅳ象限的电场中,已知粒子的比荷.如果粒子在M点入射的速度方向与x轴垂直,试求:
(1)粒子的入射速度;
(2)第I象限内磁场的磁感应强度值B2;
(3)粒子离开第Ⅳ象限时的位置P的坐标。
如图所示,固定的光滑平台左端固定有一光滑的半圆轨道,轨道半径为R,平台上静止放着两个滑块A、B,其质量mA=m,mB =2m,两滑块间夹有少量炸药.平台右侧有一小车,静止在光滑的水平地面上,小车质量M=3m,车长L=2R,车面与平台的台面等高,车面粗糙,动摩擦因数μ=0.2,右侧地面上有一立桩,立桩与小车右端的距离为S,S在0<S<2R的范围内取值,当小车运动到立桩处立即被牢固粘连。点燃炸药后,滑块A恰好能够通过半圆轨道的最高点D,滑块B冲上小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个滑块的速度方向在同一水平直线上,重力加速度为g=10m/s2.求:
(1)滑块A在半圆轨道最低点C受到轨道的支持力FN。
(2)炸药爆炸后滑块B的速度大小vB。
(3)请讨论滑块B从滑上小车在小车上运动的过程中,克服摩擦力做的功Wf与S的关系。
如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN的半径为R=3.2m,水平部分NP长L=3.5m,物体B静止在足够长的平板小车C上,B与小车的接触面光滑,小车的左端紧贴平台的右端。从M点由静止释放的物体A滑至轨道最右端P点后再滑上小车,物体A滑上小车后若与物体B相碰必粘在一起,它们间无竖直作用力。A与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等。物体A、B和小车C的质量均为1kg,取g=10m/s2。求:
(1)物体A进入N点前瞬间对轨道的压力大小?
(2)物体A在NP上运动的时间?
(3)物体A最终离小车左端的距离为多少?
如图,质量为
的小车静止在光滑的水平面上,小车AB段是半径为
的四分之一圆弧光滑轨道,
段是长为
的水平粗糙轨道,两段轨道相切于
点,一质量为
的滑块在小车上从
点静止开始沿轨道滑下,重力加速度为
。
(1)若固定小车,求滑块运动过程中对小车的最大压力;
(2)若不固定小车,滑块仍从
点由静止下滑,然后滑入
轨道,最后从
点滑出小车,已知滑块质量 ,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道
间的动摩擦因数为
,求:
① 滑块运动过程中,小车的最大速度
;
② 滑块从
运动过程中,小车的位移大小
。
“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的电势为 ,内圆弧面CD的电势为,足够长的收集板MN平行边界ACDB,ACDB与MN板的距离为L.假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子的影响,不考虑过边界ACDB的粒子再次返回。
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个匀强磁场,方向垂直纸面向内,则发现均匀吸附到AB圆弧面的粒子经O点进入磁场后最多有能打到MN板上,求所加磁感应强度的大小;
(3)如图3所示,在PQ(与ACDB重合且足够长)和收集板MN之间区域加一个垂直MN的匀强电场,电场强度的方向如图所示,大小,若从AB圆弧面收集到的某粒子经O点进入电场后到达收集板MN离O点最远,求该粒子到达O点的速度的方向和它在PQ与MN间运动的时间。
如下图是阿毛同学的漫画中出现的装置,描述了一个“吃货”用来做“糖炒栗子”的“萌”事儿:将板栗在地面小平台上以一定的初速经两个四分之一圆弧衔接而成的轨道,从最高点P飞出进入炒锅内,利用来回运动使其均匀受热。我们用质量为m的小滑块代替栗子,借这套装置来研究一些物理问题。设大小两个四分之一圆弧半径为2R和R,小平台和圆弧均光滑。将过锅底的纵截面看作是两个斜面AB、CD和一段光滑圆弧BC组成,滑块与斜面间的动摩擦因数为0.25,且不随温度变化。两斜面倾角均为,AB=CD=2R,A、D等高,D端固定一小挡板,碰撞不损失机械能。滑块的运动始终在包括锅底最低点的竖直平面内,重力加速度为g。
(1)如果滑块恰好能经P点飞出,为了使滑块恰好沿AB斜面进入锅内,应调节锅底支架高度使斜面的A、D点离地高为多少?
(2)接(1)问,试通过计算用文字描述滑块的运动过程。
(3)对滑块的不同初速度,求其通过最高点P和小圆弧最低点Q时受压力之差的最小值。
如图所示,质量为m带电量为+q的小球静止于光滑绝缘水平面上,在恒力F作用下,由静止开始从A点出发到B点,然后撤去F,小球冲上放置在竖直平面内半径为R的光滑绝缘圆形轨道,圆形轨道的最低点B与水平面相切,小球恰能沿圆形轨道运动到轨道末端D,并从D点抛出落回到原出发点A处。整个装置处于电场强度为E= 的水平向左的匀强电场中,小球落地后不反弹,运动过程中没有空气阻力。求:AB之间的距离和力F的大小。
如图所示,电阻不计的两光滑平行金属导轨相距L=1m,PM、QN部分水平放置在绝缘桌面上,半径a=0.9m的光滑金属半圆导轨处在竖直平面内,且分别在M、N处平滑相切, PQ左端与R=2Ω的电阻连接.一质量为m=1kg、电阻r=1Ω的金属棒放在导轨上的PQ处并与两导轨始终垂直.整个装置处于磁感应强度大小B=1T、方向竖直向上的匀强磁场中,g取10m/s2.求:
(1)若金属棒以v=3m/s速度在水平轨道上向右匀速运动,求该过程中棒受到的安培力大小;
(2)若金属棒恰好能通过轨道最高点CD处,求棒通过CD处时棒两端的电压;
(3)设LPM=LQN=3m,若金属棒从PQ处以3m/s匀速率沿着轨道运动,且棒沿半圆轨道部分运动时,回路中产生随时间按余弦规律变化的感应电流,求棒从PQ运动到CD的过程中,电路中产生的焦耳热.