如图所示,一个质量m=1kg的长木板静止在光滑的水平面上,并与半径为R=1.8m的光滑圆弧形固定轨道接触(但不粘连),木板的右端到竖直墙的距离为s=0.08m;另一质量也为m的小滑块从轨道的最高点由静止开始下滑,从圆弧的最低点A滑上木板。设长木板每次与竖直墙的碰撞时间极短且无机械能损失。木板的长度可保证物块在运动的过程中不与墙接触。已知滑块与长木板间的动摩擦因数=0.1,g取10m/s2。试求:
(1)滑块到达A点时对轨道的压力大小;
(2)当滑块与木板达到共同速度()时,滑块距离木板左端的长度是多少?
如图所示,在竖直平面内固定的圆形绝缘轨道的圆心为O、半径为r、内壁光滑,A.B两点分别是圆轨道的最低点和最高点,该区域存在方向水平向右的匀强电场,一质量为m、带负电的小球在轨道内侧做完整的圆周运动,(电荷量不变)经过C点时速度最大,O、C连线与竖直方向的夹角,CD为直径,重力加速度为g,求
(1)小球所受到的电场力的大小
(2)小球在A点速度多大时,小球经过D点时对圆轨道的压力最小
如图甲,PNQ为竖直放置的半径为0.1m的半圆形轨道,在轨道的最低点P和最高点Q各安装了一个压力传感器,可测定小球在轨道内侧,通过这两点时对轨道的压力FP和FQ.轨道的下端与一光滑水平轨道相切,水平轨道上有一质量为0.06kg的小球A,以不同的初速度与静止在轨道最低点P处稍右侧的另一质量为0.04kg的小球B发生碰撞,碰后形成一整体(记为小球C)以共同速度v冲入PNQ轨道.(A、B、C三小球均可视为质点,g取10m/s2)
(1)若FP和FQ的关系图线如图乙所示,求:当 FP="13N" 时所对应的入射小球A的初速度为多大?
(2)当FP=13N时,AB所组成的系统从A球开始向左运动到整体达到轨道最高点Q全过程中所损失的总机械能为多少?
(3)若轨道PNQ光滑,小球C均能通过Q点.试推导FP随FQ变化的关系式,并在图丙中画出其图线.
如图所示,与纸面垂直的竖直面MN的左侧空间中存在竖直向上场强大小为的匀强电场(上、下及左侧无界)。一个质量为、电量为的可视为质点的带正电小球,在时刻以大小为的水平初速度向右通过电场中的一点P,当时刻在电场所在空间中加上一如图所示随时间周期性变化的磁场,使得小球能竖直向下通过D点,D为电场中小球初速度方向上的一点,PD间距为,D到竖直面MN的距离DQ为.设磁感应强度垂直纸面向里为正.
(1)试说明小球在0—时间内的运动情况,并在图中画出运动的轨迹;
(2)试推出满足条件时的表达式(用题中所给物理量、、、、来表示);
(3)若小球能始终在电场所在空间做周期性运动.则当小球运动的周期最大时,求出磁感应强度及运动的最大周期的表达式(用题中所给物理量、、、来表示)。
如图所示,在竖直面内有一光滑水平直轨道与半径为R=0.25m的光滑半圆形轨道在半圆的一个端点B相切,半圆轨道的另一端点为C。在直轨道上距B为x(m)的A点,有一可看做质点、质量为m=0.1kg的小物块处于静止状态。现用水平恒力将小物块推到B处后撤去恒力,小物块沿半圆轨道运动到C处后,恰好落回到水平面上的A点,取g=10m/s2。求
(1)水平恒力对小物块做功W与x的关系式;
(2)水平恒力做功的最小值;
(3)水平恒力的最小值。
如图所示,空间区域I、II有匀强电场和匀强磁场,MN、PQ为理想边界,I区域高度为d,II区域的高度足够大,匀强电场方向竖直向上;I、II区域的磁感应强度大小均为B,方向分别垂直纸面向里和向外。一个质量为m、带电荷量为q的小球从磁场上方的O点由静止开始下落,进入场区后,恰能做匀速圆周运动。已知重力加速度为g。
(1)试判断小球的电性并求出电场强度E的大小;
(2)若带电小球运动一定时间后恰能回到O点,求它释放时距MN的高度h;
(3)试讨论在h取不同值时,带电小球第一次穿出I区域的过程中,电场力所做的功。
光滑水平面上有一质量为M的滑块,滑块的左侧是一光滑的圆弧,圆弧半径为R=1m.一质量为m的小球以速度v0向右运动冲上滑块.已知M=4m,g取10m/s2,若小球刚好没跃出圆弧的上端,求:
(1)小球的初速度v0是多少?
(2)滑块获得的最大速度是多少?
如图所示,一带负电的金属环绕轴以角速度匀速旋转,在环左侧轴线上的小磁针最后平衡的位置是( )
A.N极竖直向上 | B.N极竖直向下 |
C.N极沿轴线向左 | D.N极沿轴线向右 |
如图所示,在竖直向下的匀强电场中,一个质量为m带负电的小球从斜轨道上的A点由静止滑下,小球通过半径为R的圆轨道顶端的B点时恰好不落下来。已知轨道光滑又绝缘,且小球所受的重力是它所受电场力的2倍,求:
(1)A点在斜轨道上的高度h为多少?
(2)小球运动到最低点时对轨道的压力为多少?
一转动装置如图甲所示,两根足够长轻杆OA、OB固定在竖直轻质转轴上的O点,两轻杆与转轴间夹角均为30°,小球a、b分别套在两杆上,小环c套在转轴上,球与环质量均为m,c与a、b间均用长为L的细线相连,原长为L的轻质弹簧套在转轴上,且与轴上P点、环c相连。当装置以某一转速转动时,弹簧伸长到,环c静止在O处,此时弹簧弹力等于环的重力,球、环间的细线刚好拉直而无张力。弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g。求:
(1)细线刚好拉直而无张力时,装置转动的角速度ω1
(2)如图乙所示,该装置以角速度ω2(未知)匀速转动时,弹簧长为L/2,求此时杆对小球的弹力大小;
(3)该装置转动的角速度由ω1缓慢变化到ω2,求该过程外界对转动装置做的功。
如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R=0.40m.在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E=1.0×104N/C.现有一电荷量q=+1.0×10﹣4C,质量m=0.10kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点.取g=10m/s2.试求:
(1)带电体在圆形轨道C点的速度大小.
(2)D点到B点的距离xDB.
(3)带电体运动到圆形轨道B点时对圆形轨道的压力大小.
(4)带电体在从P开始运动到落至D点的过程中的最大动能.
如图所示,ABCD竖直放置的光滑绝缘细管道,其中AB部分是半径为R的圆弧形管道,BCD部分是固定的水平管道,两部分管道恰好相切于B。水平面内的M、N、B三点连线构成边长为L等边三角形,MN连线过C点且垂直于BCD。两个带等量异种电荷的点电荷分别固定在M、N两点,电荷量分别为和。现把质量为、电荷量为的小球(小球直径略小于管道内径,小球可视为点电荷),由管道的A处静止释放,已知静电力常量为,重力加速度为。求:
(1)小球运动到B处时受到电场力的大小;
(2)小球运动到C处时的速度大小;
(3)小球运动到圆弧最低点B处时,小球对管道压力的大小。
某物理小组的同学设计了一个粗制玩具小车通过凹形桥最低点的速度的实验,所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径为R=0.20m)。完成下列填空:
将凹形桥模拟器静置于托盘秤上,如图(a)所示,托盘秤的示数为1.00kg;
将玩具车静置于凹形桥模拟器最低点时,托盘秤的示数如图b所示,该示数为______kg;
将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧,此过程中托盘秤的最大示数为m;多次从同一位置释放小车,记录各次的m值如下表所示:
序号 |
1 |
2 |
3 |
4 |
5 |
m(kg) |
1.80 |
1.75 |
1.85 |
1.75 |
1.90 |
根据以上数据,可求出小车经过凹形桥最低点时对桥的压力为____N;小车通过最低点时的速度大小为______m/s。(重力加速度,计算结果保留2位有效数字)。
如图所示,AB是位于竖直平面内、半径R=0.5 m的圆弧形的光滑绝缘轨道,其下端点B与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度E=5×103 N/C.今有一质量为m=0.1 kg、带电荷量q=+8×10-5C的小滑块(可视为质点)从A点由静止释放.若已知滑块与水平轨道间的动摩擦因数μ=0.05,取g=10 m/s2,求:
(1) 小滑块第一次经过圆弧形轨道最低点B时对B点的压力;
(2) 小滑块运动到右侧最远处到最低点B的距离;
(3) 小滑块在水平轨道上通过的总路程。
如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4m,l=2.5m,v0=6m/s,物块质量m=1kg,与PQ段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计.取g=10m/s2.求:
(1)物块经过圆轨道最高点B时对轨道的压力;
(2)物块从Q运动到P的时间及弹簧获得的最大弹性势能;
(3)物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.