(12分)如图所示,在距水平地面高为0.4m处,水平固定一根长直光滑杆,杆上P处固定一定滑轮(大小不计),滑轮可绕水平轴无摩擦转动,在P点的右边,杆上套一质量m=3kg的滑块A。半径R=0.3m的光滑半圆形轨道竖直地固定在地面上,其圆心O在P点的正下方,在轨道上套有一质量m=3kg的小球B。用一条不可伸长的柔软细绳,通过定滑轮将两小球连接起来。杆和半圆形轨道在同一竖直面内,滑块和小球均可看作质点,且不计滑轮大小的影响。现给滑块A施加一个水平向右、大小为60N的恒力F,求:
(1)把小球B从地面拉到半圆形轨道顶点C的过程中力F做的功。
(2)小球B运动到C处时所受的向心力的大小。
(3)小球B被拉到离地多高时滑块A与小球B的速度大小相等?
如图,“蜗牛状”轨道OAB竖直固定,其最低点与平板车左端平滑对接,平板车静止在光滑水平面上。其中,“蜗牛状”轨道由内壁光滑的两个半圆轨道OA、AB平滑连接而成,轨道OA的半径R=0.6m,其下端O刚好是轨道AB的圆心。将一质量为m=0.5kg的小球从O点沿切线方向以某一初速度进入轨道OA后,可沿OAB轨道运动滑上平板车。取g=10m/s2.
(1)若因受机械强度的限制,“蜗牛状”轨道AB段各处能承受最大挤压力为Fm=65N,则在保证轨道不受损情况下,该轨道最低点B处速度传感器显示速度范围如何?
(2)设平板车质量为M=2kg,平板车长度为L=2m,小球与平板车上表面动摩擦因数μ=0.5。现换用不同质量m的小球,以初速度v0=m/s从O点射入轨道,试讨论小球质量在不同取值范围内,系统因摩擦而相应产生的热量Q。
如图,有3块水平放置的长薄金属板a、b和c,a、b之间相距为L。紧贴b板下表面竖直放置半径为R的半圆形塑料细管,两管口正好位于小孔M、N处。板a与b、b与c之间接有电压可调的直流电源,板b与c间还存在方向垂直纸面向外的匀强磁场。当体积为V0、密度为ρ、电荷量为q的带负电油滴,等间隔地以速率v0从a板上的小孔竖直向下射入,调节板间电压Uba和Ubc,当Uba=U1、Ubc=U2时,油滴穿过b板M孔进入细管,恰能与细管无接触地从N孔射出。忽略小孔和细管对电场的影响,不计空气阻力,重力加速度为g。求:
(1)油滴进入M孔时的速度v1;
(2)b、c两板间的电场强度E和磁感应强度B的值;
(3)当油滴从细管的N孔射出瞬间,将Uba和B立即调整到Uba′和B′,使油滴恰好不碰到a板,且沿原路与细管无接触地返回穿过M孔,请给出Uba′和B′的结果。
分 如图所示,平台上的小球从A点水平抛出,恰能无碰撞地进入光滑的BC斜面,经C点进入光滑平面CD时速率不变,最后进入悬挂在O点并与水平面等高的弧形轻质筐内。已知小球质量为1kg,A、B两点高度差2m,BC斜面高4m,倾角,悬挂弧筐的轻绳长为6m,小球看成质点,轻质筐的重量忽略不计,弧形轻质筐的大小远小于悬线长度,重力加速度为g=10m/s2 ,试求:
(1)B点与抛出点A的水平距离x;
(2)小球运动至C点的速度大小;
(3)小球进入轻质筐后瞬间,小球所受拉力F的大小.
【原创】如图所示,粗糙斜直轨道PA和两个光滑圆弧轨道、组成的S形轨道,斜轨道与圆弧轨道在A点光滑连接,B点是最低点,已知,圆弧轨道半径均为R,两圆弧交接处C、D之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略。斜轨道最高点P与水平面BQ的高度差为h=6.5R。从P点静止释放一个质量为m可视为质点的小球,小球沿S形轨道运动后刚好从G点水平飞出,落到水平地面上Q点。不计空气阻力,重力加速度为g,求:
(1)落点Q点到B点的距离为x?
(2)小球运动到圆形轨道最低点B点时对轨道的压力;
(3)小球与轨道PA间的动摩擦因数μ。
一质量为m1=1 kg、带电量为q=0.5 C的小球M以速度v=4.5 m/s自光滑平台右端水平飞出,不计空气阻力,小球M飞离平台后由A点沿切线落入竖直光滑圆轨道ABC,圆轨道ABC的形状为半径R<4 m的圆截去了左上角127°的圆弧,CB为其竖直直径,在过A点的竖直线OO′的右边空间存在竖直向下的匀强电场,电场强度大小为E=10 V/m.(sin53°=0.8,cos53°=0.6,重力加速度g取10 m/s2)求:
(1)小球M经过A点的速度大小vA;
(2)欲使小球M在圆轨道运动时不脱离圆轨道,求半径R的取值应满足什么条件?
【改编】下图是某装置的垂直截面图,虚线A1A2是垂直截面与磁场区边界面的交线,匀强磁场分布在A1A2的右侧区域,磁感应强度B=0.4T,方向垂直纸面向外,A1A2与垂直截面上的水平线夹角为45°。A1A2的左侧,固定的薄板和等大的挡板均水平放置,它们与垂直截面交线分别为S1、S2,相距L=0.2m。在薄板上P处开一小孔,P与A1A2线上点D的水平距离为L。在小孔处装一个电子快门。起初快门开启,一旦有带正电微粒通过小孔,快门立即关闭,此后每隔T=3.0×10-3s开启一次并瞬间关闭。从S1S2之间的某一位置水平发射一速度为v0的带正电微粒,它经过磁场区域后入射到P处小孔。通过小孔的微粒与档板发生碰撞而反弹,反弹速度大小是碰前的0.5倍。(忽略微粒所受重力影响,碰撞过程无电荷转移。已知微粒的荷质比。只考虑纸面上带电微粒的运动)求:
(1)满足题目的微粒在磁场中运动的半径的条件?
(2)经过一次反弹直接从小孔射出的微粒,其初速度v0应为多少?
(3)上述(2)问中微粒从最初水平射入磁场的位置到D点的距离d1和第二次离开磁场的位置到D点的距离d2。
分如图所示,光滑圆弧轨道最低点与光滑斜面在B点用一段光滑小圆弧平滑连接,可认为没有能量的损失,圆弧半径为R=0.5m,斜面的倾角为450,现有一个可视为质点、质量为m=0.1kg的小球从斜面上A点由静止释放,通过圆弧轨道最低点B时对轨道的压力为6N.以B点为坐标原点建立坐标系如图所示(g=l0m/s2)求:
(1)小球最初自由释放位置A离最低点B的高度h.
(2)小球运动到C点时对轨道的压力的大小;
(3)小球从离开C点至第一次落回到斜面上,落点的坐标是多少?
如图所示,在水平天花板下用a、b两绝缘细线悬挂质量m=0.04 g,带电量q=+1.0×10-4 C的小球,a线竖直,b线刚好伸直,a线长l1=20 cm,b线长l2=40 cm,小球处于静止状态。整个装置处于范围足够大、方向水平且垂直纸面向里的匀强磁场中,磁感应强度B=2.0 T,不计空气阻力,重力加速度g取10 m/s2,试求∶
(1)图示位置a、b线中的张力Ta、Tb的大小;
(2)现将a线烧断,且小球摆到最低点时b线恰好断裂,求此后2 s内小球的位移x的大小。
如图,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段铺设特殊材料,调节其初始长度为l,水平轨道左侧有一轻质弹簧左端固定,弹簧处于自然伸长状态.可视为质点的小物块从轨道右侧A点以初速度v0冲上轨道,通过圆形轨道、水平轨道后压缩弹簧,并被弹簧以原速率弹回.已知R=0.4m,l=2.5m,v0=6m/s,物块质量m=1kg,与PQ段间的动摩擦因数μ=0.4,轨道其它部分摩擦不计.取g=10m/s2.求:
(1)物块经过圆轨道最高点B时对轨道的压力;
(2)物块从Q运动到P的时间及弹簧获得的最大弹性势能;
(3)物块仍以v0从右侧冲上轨道,调节PQ段的长度l,当l长度是多少时,物块恰能不脱离轨道返回A点继续向右运动.
如图所示,在同一竖直平面内,一轻质弹簧一端固定,静止斜靠在光滑斜面上,另一自由端恰好与水平线AB齐平,一长为L的轻质细线一端固定在O点,另一端系一质量为的小球,O点到AB的距离为2L.现将细线拉至水平,小球从位置C由静止释放,到达O点正下方时,细线刚好被拉断.当小球运动到A点时恰好能沿斜面方向压缩弹簧,不计碰撞时的机械能损失,弹簧的最大压缩量为 (在弹性限度内),求:
(1)细线所能承受的最大拉力F;
(2)斜面的倾角;
(3)弹簧所获得的最大弹性势能.
如图所示,水平轨道AB与竖直轨道CD用一光滑的半径R=0.5m的圆弧BC平滑连接,现有一物块从竖直轨道上的Q点由静止开始释放,已知QC间的长度R=0.5m,物块的质量m=0.2kg,物块与AB和CD轨道间的动摩擦因数均为μ=0.5,重力加速度g取10 m/s2,求;
(1)物块下滑到水平面后,距离B点的最远距离s为多少?
(2)若整个空间存在一水平向右的匀强电场,电场强度E=1.0×106V/m,并使物块带电,带电量为q=+2.0×10-6C,所有接触面均绝缘,现使带电物块从水平面上的P点由静止开始释放(P点未在图中标出),要想使物块刚好能通过Q点,PB间的长度L为多少?
(3)在符合第二问的基础上,物块到达圆弧上C点时,对轨道的压力大小?
根据玻尔理论,电子绕氢原子核运动可以看作是仅在库仑引力作用下的匀速圆周运动,已知电子的电荷量为e,质量为m,电子在第1轨道运动的半径为r1,静电力常量为k。
(1)电子绕氢原子核做圆周运动时,可等效为环形电流,试计算电子绕氢原子核在第1轨道上做圆周运动的周期及形成的等效电流的大小;
(2)氢原子在不同的能量状态,对应着电子在不同的轨道上绕核做匀速圆周运动,电子做圆周运动的轨道半径满足rn=n2r1,其中n为量子数,即轨道序号,rn为电子处于第n轨道时的轨道半径。电子在第n轨道运动时氢原子的能量En为电子动能与“电子-原子核”这个系统电势能的总和。理论证明,系统的电势能Ep和电子绕氢原子核做圆周运动的半径r存在关系:Ep=-k(以无穷远为电势能零点)。请根据以上条件完成下面的问题。
①试证明电子在第n轨道运动时氢原子的能量En和电子在第1轨道运动时氢原子的能量E1满足关系式
②假设氢原子甲核外做圆周运动的电子从第2轨道跃迁到第1轨道的过程中所释放的能量,恰好被量子数n=4的氢原子乙吸收并使其电离,即其核外在第4轨道做圆周运动的电子脱离氢原子核的作用范围。不考虑电离前后原子核的动能改变,试求氢原子乙电离后电子的动能。
一滑块经水平轨道AB,进入竖直平面内的四分之一圆弧轨道BC。已知滑块的质量m=0.6kg,在A点的速度vA=8m/s,AB长x=5m,滑块与水平轨道间的动摩擦因数μ=0.15,圆弧轨道的半径R=2m,滑块离开C点后竖直上升h=0.2m,取g=10m/s2。
(不计空气阻力)求:
(1)滑块经过B点时速度的大小;
(2)滑块冲到圆弧轨道最低点B时对轨道的压力;
(3)滑块在圆弧轨道BC段克服摩擦力所做的功。
如图所示,半径R=0.4 m的光滑圆弧轨道BC固定在竖直平面内,轨道的上端点B和圆心O的连线与水平方向的夹角θ=30°,下端点C为轨道的最低点且与粗糙水平面相切,一根轻质弹簧的右端固定在竖直挡板上。质量m=0.1 kg的小物块(可视为质点)从空中A点以v0=2 m/s的速度被水平抛出,恰好从B点沿轨道切线方向进入轨道,经过C点后沿水平面向右运动至D点时,弹簧被压缩至最短,C、D两点间的水平距离L=1.2m,小物块与水平面间的动摩擦因数μ=0.5,g取10 m/s2。求:
(1)小物块经过圆弧轨道上B点时速度vB的大小;
(2)小物块经过圆弧轨道上C点时对轨道的压力大小;
(3)弹簧的弹性势能的最大值Epm。